科学研究費補助金研究成果報告書

平成23年3月31日現在

機関番号:32612 研究種目:基盤研究(B) 研究期間:2008~2010 課題番号:20310061 研究課題名(和文) 蛍光・磁性デュアル機能性ナノ粒子複合体の創製と特性評価

研究課題名(英文) Preparation and characterization of composites consisting of nanoparticles with dual functions of fluorescence and magnetism

研究代表者 磯部 徹彦(ISOBE TETSUHIKO) 慶應義塾大学・理工学部・教授 研究者番号:30212971

研究成果の概要(和文): 紫外光の励起によって赤色に発光する YVO₄:Bi³⁺,Eu³⁺ナノ粒子を 静電的な相互作用を用いて PMMA マイクロビーズへ複合化することを検討した。また、青色 光の励起によって緑色に発光する YAG:Ce³⁺ナノ粒子と YAG/YIG コアシェル型磁性ナノ粒子 を静電的な相互作用を用いて PMMA マイクロビーズへ複合化させることを検討した。

研究成果の概要 (英文): YVO4:Bi³⁺,Eu³⁺ nanoparticles emitting red under the excitation of ultraviolet light were hybridized with PMMA mirobeads through electrostatic interaction. In addition, YAG:Ce³⁺ nanoparticles emitting green under the excitation of blue light as well as YAG/YIG core/shell nanoparticles were hybridized with PMMA mirobeads through electrostatic interaction.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2008 年度	11, 600, 000	3, 480, 000	15, 080, 000
2009 年度	2, 000, 000	600, 000	2, 600, 000
2010 年度	1, 600, 000	480, 000	2, 080, 000
年度			
年度			
総計	15, 200, 000	4, 560, 000	19, 760, 000

研究分野: 複合新領域

科研費の分科・細目: (ナノ・マイクロ科学)・(ナノ材料・ナノバイオサイエンス) キーワード: (1) YVO₄:Bi³⁺,Eu³⁺, (2) ナノ粒子, (3) ナノ蛍光体, (4) 蛍光ビーズ, (5) 交互吸着, (6) PMMA, (7) YAG:Ce³⁺, (8) YIG

1. 研究開始当初の背景

蛍光有機色素を含有した蛍光マイクロビ ーズは、生体分子を検出する道具として利用 できる。その応用のひとつとして、フローサ イトメーター (FCM)を利用したマイクロビ ーズアレイ法があげられる。例えば、同法で は、種々の大きさや蛍光強度を持つマイクロ ビーズにさまざまな抗体を固定化し、ビーズ とは異なる波長の蛍光色素をラベルした抗 原と反応させる。次に、FCM によってビーズ を細管にフローさせながらレーザー光を照 射し、その散乱光と蛍光の強度から各ビーズ を識別し、さらに抗原を標識した蛍光色素の 検出の有無によって、どのタイプの抗体に抗 原が反応したのかを調べる。この方法は、水 溶液中にビーズを懸濁した状態で分析する ので、バイオチップに比較して簡便であり、 多数の検体を高速で分離・検出できるという 特徴を持つ。抗原抗体反応のほかに、FCM は DNA の個人差を判別する SNPs (一塩基多型) 解析として注目されている。

現在、FCM 用の蛍光ビーズには有機色素を 包埋したポリマー粒子が利用されている。し かしながら、マトリクスと有機色素との親和 性が低いため、蛍光物質の充填率を増加させ るためには複雑な前処理を必要とする。また、 次のような蛍光有機色素の問題点を有して いる。

①保存時に光退色が起こる。

②励起波長と蛍光波長の近接により、励起光 の迷光を蛍光として検出する。

③蛍光スペクトルがブロードであり、複数の 蛍光色を同時に利用することが困難である。

蛍光有機色素の問題点を解決できる材料 として、近年 CdSe/ZnS コア/シェル型半導 体ナノ粒子(量子ドット)が開発されている。 Nie らは、CdSe/ZnS 量子ドットが多色発光で きることを利用してオプティカルコードを 持つマイクロビーズを作製し、バイオアッセ イに利用できることを提案した。これらの蛍 光ビーズの蛍光はフローサイトメーターに よって検出できることが実証されている。

量子ドットや希土類ドープナノ粒子を複 合化した蛍光マイクロビーズは、次のような 4種類の方法により作製されている。第1の 方法はポリスチレンおよびシリカの多孔質 ビーズの細孔に、トリオクチルホスフィンオ キシドに被覆された CdSe/ZnS 量子ドットを 導入する方法である。第2の方法は静電的な 相互作用を利用して蛍光ナノ粒子とビーズ を複合化させる方法である。チオグリコール 酸を被覆した CdTe 量子ドットは負に帯電し た COO⁻基を持つので、正に帯電した NH₄⁺基を 持つポリアリルアミンハイドロクロライド (PAH) と負に帯電した SO₃ 基を持つポリスチ レンスルホン酸ナトリム(PSS)を交互に積 層した PAH/PSS/PAH ポリスチレンビーズと複 合化することが報告されている。第3の方法

は、有機溶媒中でポリマーを膨潤させてナノ 粒子を取り込ませる方法である。第4の方法 は、ポリマービーズを重合する際に量子ドッ トを複合化する方法である。

2. 研究の目的

生体分子を検出するアッセイなどに用い られる蛍光標識ビーズでは、蛍光材料として 有機色素が広く使用されている。しかし、有 機色素は紫外光の励起や周囲の酸素との反 応により退色を起こしやすく、長期の保存や 観察に適していない。このため、耐久性の観 点から無機ナノ粒子の蛍光体が有機色素に 替わる蛍光材料として注目されている。また、 高分子ビーズとナノ粒子を比較的簡便な操 作によって複合化させる手法として交互吸 着法があげられる。同法は異符号に帯電して いる物質間の静電的な相互作用を利用して いる。本研究では、交互吸着法を用いて研究

代表者が開発した近紫外光で励起して赤色 蛍光を示す YVO₄:Bi³⁺,Eu³⁺蛍光ナノ粒子を PMMA ビーズに複合化させることを検討した。 また、研究代表者はグリコサーマル法で合成 した Y_{3(1-x)}Ce_{3x}A1₅O₁₂ (YAG:Ce³⁺) 蛍光ナノ粒子 を交互吸着法によって PMMA マイクロビーズ に複合化する手法をすでに確立している。こ のため、本研究では、同様の吸着操作により 磁性ナノ粒子をビーズに複合化させるため に YAG と同じガーネット構造を有する Y₃Fe₅0₁₂(YIG) 磁性ナノ粒子をグリコサーマ ル法によって合成し、YAG:Ce³⁺蛍光ナノ粒子 と YIG 磁性ナノ粒子を交互吸着法によって PMMA ビーズへ吸着させ、蛍光/磁性のデュア ル機能を有する複合マイクロビーズの作製 を検討した。

3. 研究の方法

(1) 近紫外光励起赤色蛍光マイクロビーズ の作製

①粒子径 10µmの PMMA ビーズを水に分散させ、 カチオン性高分子 PAH 水溶液を加えてビーズ 表面に PAH を吸着させた。さらに、このビー ズに負に帯電している YVO₄:Bi³⁺, Eu³⁺ナノ粒 子を混合して吸着させて複合ビーズ A を作製 した。

②水に分散させた PMMA ビーズに、カチオン 性高分子 PAH とアニオン性高分子 PSS を交互 に吸着させて各 4 層ずつ積層させた。得られ たビーズに、さらに PAH を吸着させた後、 $VV0_4:Bi^{3+}, Eu^{3+} ナノ粒子を吸着させて複合ビ$ ーズ B を作製した。

③負に帯電している YV0₄:Bi³⁺, Eu³⁺ナノ粒子 に、正に帯電した PAH を被覆した後、負に帯 電した 10µm の PMMA ビーズに吸着させて複合 ビーズ C を作製した。

④YV0₄:Bi³⁺,Eu³⁺ナノ粒子を 10°C/min で昇温 し、所定温度で 2h 保持した後、室温まで放 冷して焼成粉末試料を得た。この粉末試料を 超純水に再分散させ、超音波処理をした後、 フィルタに通して再分散コロイド溶液を得 た。また、粒子径 10µmの PMMA ビーズを水に 分散させ、カチオン性高分子 PAH 水溶液を加 えてビーズ表面に PAH を吸着させた。このビ ーズに、上述の再分散コロイド溶液を混合し て吸着させて複合ビーズ D を作製した。

(2) 青色光励起緑色蛍光・磁性マイクロビー ズの作製

1,4-ブタンジオール、酢酸イットリウム四 水和物および酢酸セリウムをオートクレー ブに投入した。次に、300℃まで 90min で昇 温し、同温度で 2h 保持した後、室温まで空 冷し、YAG:Ce³⁺ナノ粒子を合成した。同様に Ce³⁺をドープしていない YAG ナノ粒子を合成 した。次に、1,4-ブタンジオール、ジエチレ ングリコールおよび YAG ナノ粒子分散液をオ ートクレーブに投入し、さらに酢酸イットリ ウム四水和物および鉄(Ⅲ)アセチルアセト ナートを仕込んだ。次に、300℃まで 90min で昇温し、同温度で 2h 保持した後、室温ま で空冷し、コア/シェル型 YAG/YIG ナノ粒子 を合成した。また、静電的な相互作用を利用 し、負に帯電した 10µm の PMMA マイクロビー ズに正に帯電した YAG/YIG ナノ粒子と負に帯 電したアニオン性高分子 PSS を交互に吸着し た。さらに、同様の操作で YAG:Ce³⁺ナノ粒子 と PSS を交互に吸着し、蛍光/磁性複合マイ クロビーズを得た。

(3) キャラクタリゼーション

動的光散乱法 (DLS) による粒子径分布測定、 ゼータ電位測定、フーリエ変換赤外線吸収 (FT-IR) スペクトル測定、粉末 X 線回折法 (XRD)、蛍光 X 線分析による元素分析、走査 型電子顕微鏡 (SEM) による観察、蛍光顕微 鏡による観察、FCM などを行った。

4. 研究成果

 (1) 未焼成 YV0₄:Bi³⁺, Eu³⁺ナノ粒子の PMMA マ イクロビーズへの複合化

水 (pH=7.4) に分散させた YVO4:Bi³⁺, Eu³⁺ ナノ粒子のゼータ電位の分布は-40mV 付近に 位置していた。YVO₄:Bi³⁺,Eu³⁺ナノ粒子の FT-IR スペクトルには、1575cm⁻¹および 1395cm⁻¹ 付近にそれぞれクエン酸イオンのカ ルボキシル基(COO⁻)の非対称伸縮振動および 対称伸縮振動によるピークが観測された。こ れより、YVO₄:Bi³⁺,Eu³⁺ナノ粒子はクエン酸の 吸着により負に帯電していると考えられる。 水 (pH=6.8) に分散させた PMMA ビーズのゼ ータ電位の分布は-85mV 付近に位置していた。 このように、YVO₄:Bi³⁺,Eu³⁺ナノ粒子および PMMA ビーズはともに負に帯電していた。この ため、PMMA ビーズにカチオン性高分子である PAHを吸着させたところ、ゼータ電位を+50mV 付近の正の値へ反転できた。

PAH を被覆させた PMMA ビーズに YVO₄:Bi³⁺, Eu³⁺ナノ粒子を静電的な引力によ って被覆することを検討した。ゼータ電位の pH 依存性から、吸着処理を行う pH は両者の ゼータ電位の符号が逆であり、その差が大き い pH=7.0 付近とした。PAH を被覆させた PMMA ビーズに YVO₄:Bi³⁺, Eu³⁺ナノ粒子を混合した ところ、ゼータ電位の分布は OmV 付近にシフ トした。図1(a)(b)および(c)(d)にそれぞれ PMMA ビーズおよび複合ビーズ Aの SEM 像を示 す。この結果より、PMMA ビーズ表面にナノ粒 子が被覆している様子が観察された。近紫外 光によって PMMA ビーズおよび複合ビーズ A を励起し、蛍光を検出したときの蛍光画像を それぞれ図2(a)および(b)に示す。この結果 より、PMMA ビーズには何も観察されないのに 対し、複合ビーズAには微弱な赤色の蛍光が

観察された。これは、PMMA ビーズ表面に吸着 した YVO₄:Bi³⁺, Eu³⁺ナノ粒子が、 $0^{2-} \rightarrow V^{5+}$ の電荷 移動遷移および Bi³⁺に起因する励起により、 Eu³⁺の f-f 遷移によって赤色に発光したこと に起因する。

PMMA ビーズに、カチオン性高分子 PAH とア ニオン性高分子 PSS を交互に各4層ずつ吸着 させたのち、さらに PAH を吸着させたビーズ を作製した。その際に、各吸着操作によって ゼータ電位が反転することを確認した。この ビーズに YVO₄:Bi³⁺, Eu³⁺ナノ粒子を吸着させ て作製した複合ビーズ B の SEM 像を図1 (e)(f)に示す。この結果より、複合ビーズ A よりも複合ビーズ B の方がビーズ表面への YVO₄:Bi³⁺, Eu³⁺ナノ粒子の吸着量が多いこと がわかる。また、図2(c)に示すように、複 合ビーズ A よりも複合ビーズ B の方が、蛍光 強度が高かった。これらの結果の原因として、 高分子の被覆を繰り返すことによりビーズ 表面にミクロな凹凸が形成され、ナノ粒子の 吸着サイト数が増加したことが考えられる。

図1 SEM 写真. (a,b) PMMA ビーズ, (c,d) 複合ビーズ A, (e,f) 複合ビーズ B. Scale bar: 5 µm (a, c, e), 500 nm (b, d, f).

図2 蛍光画像と明視野像. (a) PMMA ビーズ, (b) 複合ビーズ A, (c) 複合ビー ズ B.

次に、負に帯電している YV0₄:Bi³⁺,Eu³⁺ナノ 粒子に、正に帯電した PAH を被覆したところ、 平均粒子径が 18nm から 110nm へ増大した。 ゼータ電位はマイナスからプラスへ反転し たため、ナノ粒子を PAH で被覆できたことが わかる。ナノ粒子を PAH で被覆することで、 蛍光・励起波長の変化は見られなかった。SEM 観察から、複合ビーズ A よりも複合ビーズ C の方が、ナノ粒子が全体的に均一に吸着して いる様子が確認できた。また、他の分析結果 より複合ビーズ C の方が複合ビーズ A に比較 して吸着量が多く、蛍光強度が大きいことが わかった。

(2) 焼成 YVO₄:Bi³⁺, Eu³⁺ナノ粒子の PMMA マイ クロビーズへの複合化

Eu³⁺の蛍光に対する励起スペクトルより、 YVO4:Bi³⁺, Eu³⁺ナノ粒子焼成試料は波長 300nm 以上の近紫外光で励起できることがわかっ た。蛍光強度は焼成温度の上昇と共に増大し たが、400℃以上では減少した。XRDの結果か ら 400℃以上の焼成試料には BiVO4 のピーク が観測された。このような YVO₄と BiVO₄との 相分離が蛍光強度の低下の原因であると考 えられる。また、FT-IR、ζ電位測定、DLSの 結果から、焼成してもカルボキシル基が残存 し、負に帯電し、水中へのナノ粒子の分散も 良好であることがわかった。以上のことから 吸着させる蛍光体の焼成温度を 300℃とした。 図3に、YVO₄:Bi³⁺, Eu³⁺ナノ粒子の 300℃焼成 試料を、PAH 被覆 PMMA ビーズに被覆した複合 ビーズ D の蛍光顕微鏡画像と SEM 像を示す。 焼成試料を用いることで未焼成試料と比較 して吸着量が増加し、蛍光強度も増大した。 これは、焼成により、蛍光体自身の蛍光強度 が増大したことと、蛍光体表面に強固に配位 しているクエン酸イオンだけが焼成後には 残存していることが原因として考えられる。

図3 複合ビーズ D の SEM 写真と蛍 光・光学顕微鏡画像.

以上のように、種々の交互吸着法を用いて YV0₄:Bi³⁺,Eu³⁺ナノ粒子を PMMA マイクロビー ズへ複合化する手法を検討した。今後は、 YV0₄:Bi³⁺,Eu³⁺蛍光ナノ粒子のほかに磁性ナ ノ粒子をさらに複合化し、蛍光・磁性の機能 を併せ持つ複合ビーズを作製することを検 討する予定である。

(3) YAG: Ce³⁺と YIG ナノ粒子の PMMA マイクロ
 ビーズへの複合化

合成した磁性ナノ粒子の XRD プロファイル には YAG のほかに YIG のピークが観測された。 YIG 原料に対する YAG ナノ粒子の仕込み比を 変化させても、両者の XRD ピークはシフトし なかった。また、ほぼ全てのサンプルが、磁 石によって誘導された。単一の結晶方位を持 つ格子像が観察されたので、YIG が YAG 上に エピタキシャル成長したと考えられる。DLS により水中での分散状態を調べたところ、 YAG/YIG ナノ粒子は良好に分散していた。 YAG/YIG ナノ粒子のゼータ電位は、正に帯電 (+48.3±7mV)しており、交互吸着操作が可能 な値を示した。複合ビーズのSEM像によると、 PMMA ビーズにYAG/YIG およびYAG:Ce³⁺ナノ粒 子が複合化したことが観察された。図4に示 すように、作製した蛍光/磁性複合ビーズは 青色光励起で緑色蛍光を示した。また、FCM による蛍光強度評価においてもドット群と して認識できた。図5に示すように、磁石に よる磁気誘導が可能であり、磁石を取り除け ば再び良好に分散することを確認した。

図4 蛍光/磁性複合ビーズの写真. (a) 明 視野像, (b) 蛍光画像.

図5 蛍光/磁性複合ビーズの磁気誘 導の様子.

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計2件)

① Kenji Akisada, Yusuke Noguchi, <u>Tetsuhiko Isobe</u>, "Preparation of Composite PMMA Microbeads Hybridized with Fluorescent $YVO_4:Bi^{3+}, Eu^{3+}$ Nanoparticles", IOP Conference Series: Materials Science and Engineering, 査読有, 2011, in press.

②秋貞研二,<u>磯部徹彦</u>, "交互吸着法による YV0₄:Bi³⁺,Eu³⁺ナノ粒子複合 PMMA ビーズの作 製",希土類,査読無,No.54,2009,pp.58 ~59.

〔学会発表〕(計3件) ① Kenji Akisada, Yusuke Noguchi, <u>Tetsuhiko</u> Isobe, "Preparation of Composite PMMA Microbeads Hybridized with Fluorescent YVO₄:Bi³⁺,Eu³⁺ Nanoparticles", The 3rd International Congress on Ceramics, 2010年11月15日,大阪国際会議場(大阪府)

②野口雄介,秋貞研二,<u>磯部徹彦</u>, "焼成した YV0₄:Bi³⁺,Eu³⁺ナノ粒子を複合させた蛍光 マイクロビーズの作製",第48回セラミッ クス基礎科学討論会,2010年1月13日,沖 縄コンベンションセンター(沖縄県)

 ③秋貞研二,<u>磯部徹彦</u>, "交互吸着法による YV0₄:Bi³⁺,Eu³⁺ナノ粒子複合 PMMA ビーズの作
 製",第26回希土類討論会,2009年5月28
 日,札幌コンベンションセンター(北海道)

〔その他〕 ホームページ

http://www.applc.keio.ac.jp/~isobe/

受賞

The Poster Award Kenji Akisada, Yusuke Noguchi, <u>Tetsuhiko</u> <u>Isobe</u>, "Preparation of Composite PMMA Microbeads Hybridized with Fluorescent $YV0_4$:Bi³⁺,Eu³⁺ Nanoparticles", The 3rd International Congress on Ceramics, 2010 年 11 月 15 日, 大阪国際会議場 (大阪府)

6. 研究組織

- (1)研究代表者
 磯部 徹彦 (ISOBE TETSUHIKO)
 慶應義塾大学・理工学部・教授
 研究者番号: 30212971
- (2)研究分担者該当なし

(3)連携研究者 該当なし