科学研究費補助金研究成果報告書

平成23年5月19日現在

機関番号:17102 研究種目:基盤研究(B) 研究期間:2008~2010 課題番号:20350026 研究課題名(和文) 極性錯体磁性系の合理的構築と多重物性発現

研究課題名(英文) Rational Construction of Metal Complex-based Polar Magnets Having Multiple Properties

研究代表者 大場 正昭(OHBA MASAAKI) 九州大学・大学院理学研究院・教授 研究者番号:00284480

研究成果の概要(和文):

光学活性なジアミン分子 (L) を補助配位子として骨格構造に導入して、一次元極性強磁 性体 PPh₄[Ni(L)₂][Fe(CN)₆] (空間群 P1) を得た。非線形磁気応答および μSR の測定から、 この化合物の磁気構造が、3.0 K における 2 次元イジング型から、2.5 K 以下ではキラル磁 気構造を含む 3 次元磁気秩序型に変化することが示された。キラル補助配位子により極性 構造を合理的に誘導することで、キラル磁気構造の構築に成功した。

研究成果の概要(英文):

Novel 1-D chiral cyanide-bridged ferromagnets, $PPh_4[Ni(L)_2][Fe(CN)_6]$ have been prepared using chiral co-ligands (L). Two-step magnetic ordering was observed at 3.0 and 2.5 K, which was supported by linear and nonlinear ac magnetic responses, magnetic specific heat and μ SR. These multiple results corroborated that the magnetic structure changed among the two-dimensional Ising-type paramagnetic phase above 3.0 K, the two-dimensional Ising ordered phase between 3.0 K and 2.5 K, and the three-dimensional magnetic ordered phase involving some chiral spin structures below 2.5 K. The trial of chirality transfer from the structure to the spin structure was succeeded in the one-dimensional molecular-based magnets incorporating chiral co-ligand and single-ion anisotropy.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2008年度	7, 500, 000	2, 250, 000	9, 750, 000
2009年度	3, 700, 000	1, 110, 000	4, 810, 000
2010年度	3, 500, 000	1,050,000	4, 550, 000
総計	14, 700, 000	4, 410, 000	19, 110, 000

研究分野:化学

科研費の分科・細目:基礎化学・無機化学 キーワード:キラリティ、フェリ磁性、強磁性、誘電性

1. 研究開始当初の背景

キラリティは分子構造由来の性質の一つ であり、生命の起源に深く関係する。固体物 性においても、対称性と異方性の制御は、強 誘電性や非線形第二高調波発生などの特異 物性発現に不可欠である。反転中心が消失し た極性磁性体では、その構造的な電気分極と 磁化との相互作用により、光・磁気・電気的 性質が相関する複合物性の発現が期待され る。大場らは、2001年にキラル構造を持つ 錯体磁性体を発表し、磁気構造に対する構造 的キラリティの影響を提唱した。以降、キラ ルまたは極性構造を持つ類似の磁性体が報 告されたものの、磁性と極性構造の明確な相 関は未解明であった。一方、スピンフラスト レートによるキラル磁気構造を有する酸化 物では、電気-磁気相互作用の理論的考察が 進み、国内外で誘電性と磁性が相関するマル チフェロイック特性を示す新物質が探索さ れていた。金属錯体は、金属周りの幾何構造 と多様な有機配位子の組み合わせにより、分 子レベルの構造制御が可能であるため、電気 分極と磁性が相関する舞台となりうる。しか し、当時は金属錯体を基にした誘電物性の研 究例も少なく、誘電特性の発現や基本的な設 計指針も未確立であり、電子スピンとの相関 も検討されていなかった。

2. 研究の目的

本研究では、磁気・誘電・光学特性が相関 する多重物性の発現を目的として、マクロス ケールの結晶電場と電子が相互作用しうる 特異な極性磁性系を、金属錯体を基盤として 構築した。金属錯体は精緻な構造設計が可能 であり、酸化物に比べて簡便かつ合理的に、 分子レベルで対称性や分極率の制御が可能 である。多重物性において、マクロな分子配 列制御は、結晶、膜などの状態を問わず重要 な発現条件である。加えて、電子スピンや電 気分極構造を自在に制御できれば、電気-磁 気相互作用による多重物性の発現が期待さ れる。本研究では、1.明確な分子構造を基 にした極性磁気構造の構築、2.構築分子の 非対称性と分極率制御、及びその異方的集積 化、により電気双極子モーメントと磁気モー メントを異方的に整列させた新規極性錯体 磁性体を合成し、電気-磁気相互作用につい て詳細な検討を行い、新しい多重物性化合物 の設計指針の確立を目指した。

3. 研究の方法

電気双極子モーメントと磁気モーメント の相関の結果として、構造的キラリティの磁 気構造への転写によりキラル磁気構造の構 築を計画した。反転対称性を失った結晶構造 を有する磁性体では、磁気中心間の超交換相 互作用に加えて、スピンの最安定配置を捩る Dzyaloshinskii-Moriya (DM) 相互作用が働く。 この DM 相互作用が構造のキラリティを スピン構造へ転写するための鍵であると考 える。構造的キラリティが無くとも、偶発的 にキラル磁気構造が形成されることはある が、構造的キラリティの磁気構造への転写は、 分子レベルで設計可能な合理的戦略である。 本研究では、先ずキラル(非反転対称性・極 性)構造を構築するために、光学活性な有機 分子を補助配位子として磁性体に導入する 手法を発案した。さらに DM 相互作用を強 めるために、構造異方性の大きな1次元構に 磁気異方性の大きな磁気中心を導入し、キラ ル磁気構造の構築を検討した。

4. 研究成果

上述の設計指針を基に、磁気中心には磁気

異方性を有する Ni(II)、構造の構築素子には 磁気異方性の大きな低スピン Fe(III)を有する [Fe(CN)₆]³⁻、補助配位子に光学活性な 1,2-(1R,2R)- $\pm \hbar t$ 1,2-(1S,2S)-diphenylethylenediamine (L^R or L^S) を用いることで、1次元金 属錯体 PPh₄[Ni(L)₂][Fe(CN)₆]·3H₂O·MeCN (1R or 1S) を得た。両化合物は補助配位子由来の キラリティを有し、対称心の無い空間群 P1 で結晶化しており、[Ni(L)2]²⁺の trans 位を μ₂-[Fe(CN)₆]³⁻ が架橋した 1 次元キラル鎖状 構造を形成していた。非対称単位中には、結 晶学的に独立した 2 種類の一次元鎖が存在 しており、それぞれ a 軸方向 (Chain A) と b 軸方向 (Chain B) に伸展していた。さらに Chain A と B は、それぞれ a および b 軸に 平行に並んで層を形成し、層間には PPh₄⁺ 及 び結晶溶媒分子を挟んで 72.6 度の角度で交 差して c 軸方向に積み重なっていた。(図1)

図 1 PPh₄[Ni(L^R)₂][Fe(CN)₆]·3H₂O·MeCN (1R) の構造の *ac* 投影図 (PPh₄⁺, H₂O は省略)

直流磁気測定から、両化合物共に磁気軌道 の厳密直交により Ni(II) と Fe(III) 間に強 磁性的相互作用が働き、 $T_c = 3 \text{ K}$ で強磁性体 となることが確認された。Fe(III) の代わりに 反磁性の Co(III) または等方的電子配置を持 っ Cr(III) を用いて類縁体を合成したところ、 これらの類縁体は同一構造を有するものの、 磁気相転移を示さなかった(図2)。これより、 この強磁性転移は、低スピン Fe(III) の大き な磁気異方性により、一次元鎖間により強い DM 相互作用が働いた結果だと考えられる。

図2 PPh₄[Ni(L^R)₂][M(CN)₆]の磁気挙動

線形交流磁気応答において、交流磁気応答 では、in-phase (x')で 2.5 K (LT phase) と 3.0 K (HT phase) 付近に磁気異常が見られ、ピーク 位置は LT phase のみ周波数増加とともに高 温側へとシフトし、値が減少した (図3)。一 方 out-of-phase (χ") は、HT phase では周波数 低下とともに値が減少し、LT phase では in-phase 同様の周波数依存を示した。また、 LT phase のみ Cole-Cole プロットにおいて、 磁気ドメインの単緩和過程であることが確 認された。これらの結果より、この化合物の HT phase の強磁性転移は準スタティックな 状態であり、温度低下とともに非平衡状態に あるスピンのダイナミクスが交流磁気応答 として観測されたと考えられる。ゼロ磁場下 での磁気比熱測定においても、この2段階の 磁気相転移が確認された。また、磁気相転移 温度付近では、低次元の short-range ordering を示唆するブロードなピークも観測された。

図3 化合物 1R の線形交流磁気応答の 周波数依存

非線形交流磁気応答においては、 χ', χ'' ともに LT phase でのみ大きな3次応答および 周波数依存が観測された (図4)。 3ω 成分の 大きさは、磁気相転移に由来する 2ω 成分の約1/10程度であった。この比較的大きな3 次非線形交流磁気応答の発現は、LT phase に おけるキラル磁気構造の構築を示唆する。

図4 化合物 1R の非線形交流磁気応答の 3ω 成分の周波数依存

また、単結晶を用いた非線形交流磁気応答 においては、それぞれの1次元鎖に対して平 行に垂直に交流磁場を印加した場合(Hac // a or b)は、粉末サンプルとほぼ同じ挙動が観 測された。一方、垂直に印加した場合(Hac // c) は、3ω 成分が著しく小さくなった。この 結果は、1次元鎖に沿った異方的なキラル磁 気構造の構築を示唆する。この磁気構造を、 μSR (ミュオンスピン緩和)の温度依存性か ら検討した。0.5 ms より遅い領域における µSR の Lorentzian relaxation による解析から、 図5に示す遅い緩和過程が得られた。この過 程では、3.0 K で速い転移が観測され、2.5-3.0 K の間で速やかに振幅が減少した。さらに、 この緩和過程は、2.5 K での磁気転移におい て消滅した。遅い緩和過程における臨界指数 は、w=0.38 と見積もられた。一方、全時間 域における解析からは、図6に示す速い緩和 過程が得られた。この過程では、2.9 K およ び 2.5 K で歳差運動のシグナルに大きな変 化が観測され、2.5 K より上の領域での臨界 指数は、w=1.38 と見積もられた。これらの 解析結果から、1) 3.0 K 以上では 2 次元 Ising 型の磁気構造、2) 2.5-3.0 K の間で磁気構造 が徐々に変化して、3) 2.5 K 以下でキラルな 磁気構造を含む3次元磁気秩序構造が形成 される、ことが示された。

図5 化合物 1S の µSR の Slow relaxation

図6 化合物 1S の µSR の Fast relaxation

以上、光学活性な有機分子を補助配位子として磁性体に導入することで、キラル構造を 有する磁性体を合成に成功した。構成金属イ オンの磁気異方性、及び構造の異方性を利用 して DM 相互作用を効果的に働かせること で、構造のキラリティに基づくキラルスピン 構造の構築に成功した。以上の化合物に加え て、キラルなゲスト分子や対イオンを導入し たキラル及び極性磁性体も報告し、国内外で 引用される分子設計指針を示すことができ た。一方で、いずれも磁気転移温度が低く、 かつサンプルが風解性であったため、精密な 誘電特性の磁場及び温度依存性の評価には 問題が残った。今後は、本課題で確立したキ ラル磁性体の設計指針をより発展させ、磁気 転移温度をより高くすることで、マルチフェ ロイクスなどの多重物性を示す化合物の開 発が期待される。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 8件)

- R. Ohtani, K. Yoneda, S. Kitagawa, A. B. Gaspar, J. A. Real, <u>M. Ohba</u>, Precise Control and Consecutive Modulation of Spin Transition Temperature Using Chemical Migration between Porous Coordination Polymers, *Journal of the American Chemical Society*, 査読有, *133*, 2011, 印刷中.
- ② <u>M. Ohba</u>, K. Yoneda, S. Kitagawa, Guestresponsive Porous Magnetic Frameworks using Polycyanometallates, *CrystEngComm*, 査読有, *12*, 2010, 159-165.
- ③ F. Pratt, T. Lancaster, P. Baker, S. Blundell W. Kaneko, <u>M. Ohba</u>, S. Kitagawa, S. Takagi, Muon Spin Relaxation Studies of Critical Fluctuations and Diffusive Spin Dynamics in Molecular Magnets, *Physica B : Condensed Matter*, 査読有, 404, 2009, 585-589.
- ④ S. Yasuzuka, Y. Yamamura, W. Kaneko, <u>M.</u> <u>Ohba</u>, S. Kitagawa, K. Saito, Heat Capacity of a Layered Molecule-Based Ferrimagnet [Mn^{II}(S-pnH)(H₂O)][Mn^{III}(CN)₆]2H₂O, *Journal of the Physical Society of Japan*, 査 読有, 78, 2009, 065001-065002.
- ⑤ S. Hayami, D. Urakami, S. Sat o, Y. Kojima, K. Inoue, <u>M. Ohba</u>, Structures and Dielectric Properties in Thermochromic Nickel (II) Compounds, *Chemistry Letters*, 査読有, 38, 2009, 490-491.

〔学会発表〕(計 29件)

- <u>大場正昭</u>,米田宏,大谷亮, Ana B. Gaspar, José A. Real,北川進, Chemically-controlled Spin Transition Behavior in Porous Coordination Polymers, 39th International Conference on Coordination Chemistry, Adelaide (Australia), 2010.7.28.
- ② 宮川卓也, 大場正昭, 兼子和佳子, 美藤

<u>正樹</u>, <u>志賀拓也</u>, 大塩寛紀, 北川進, 一 次元キラル磁性体の磁気挙動における 磁気異方性の効果, 第 59 回錯体化学討 論会, 長崎, 2009.9.25.

- ③ <u>大場正昭</u>, ソフトマターとしての錯体磁 性体, 第 59 回錯体化学討論会, 長崎, 2009.9.25.
- ④ 宮川卓也,大場正昭,兼子和佳子,美藤 <u>正樹</u>,志賀拓也,大塩寛紀,北川進,低 次元キラル磁性体における磁気異方性 の影響,第3回分子科学討論会,名古屋, 2009.9.21.
- ⑤ 宮川卓也,大場正昭,志賀拓也,大塩寛 紀,北川進,1次元キラル骨格を有する Ni(II)M(III) 配位高分子の磁気特性,日本 化学会第89春季年会,西船橋,2009.3.28.
- ⑥ 宮川卓也, <u>大場正昭</u>, <u>志賀拓也</u>, 大塩寛紀, 北川進, One-dimensional Ni^{II}Fe^{III} Chiral Ferromagnets Bridged by Cyanide Groups, *11th. International Conference on Moleculebased Magnets*, Florence (Italy), 2008.9.23.

〔図書〕(計 3件)

- <u>美藤正樹</u>, <u>大場正昭</u>, 磁気測定, 金属錯 体の機器分析 (大塩寛紀 編集), 三共出 版, 2011, p1-68.
- <u>大場正昭</u>,多孔性磁性体,配位空間の化 学-最新技術と応用-(北川進 監修), シーエムシー出版,2009,p156-168.
- <u>大場正昭</u>,井上克也,キラル磁性体,金 属錯体の現代物性化学(山下正廣,小島 憲道編集), 三共出版,2008, p278-294.
- [その他]
- ホームページ等

http://www.scc.kyushu-u.ac.jp/Sakutaibussei/inde x.html

6. 研究組織

(1)研究代表者
 大場 正昭(OHBA MASAAKI)
 九州大学・大学院理学研究院・教授
 研究者番号:00284480

(2)研究分担者
 志賀 拓也(SHIGA TAKUYA)
 筑波大学・数理物質科学研究科・助教
 研究者番号:00375411

(3)連携研究者
 美藤 正樹(MITO MASAKI)
 九州工業大学・工学研究科・准教授
 研究者番号:60315108