科学研究費補助金研究成果報告書

平成23年 5月13日現在

機関番号: 14401 研究種目:基盤研究(B) 研究期間:2008~2010 課題番号:20360140

研究課題名 (和文) 完全バルク GaN 結晶育成技術の研究開発

研究課題名(英文) Development of the growth technique of truly bulk GaN single crystals

研究代表者

森 勇介 (MORI YUSUKE) 大阪大学・工学研究科・教授 研究者番号:90252618

研究成果の概要(和文):

Na フラックス法において微小 GaN 単結晶を種結晶に用いた、バルク GaN 単結晶成長を行っ た。種結晶外核発生を抑制する C に加え、Sr や Ba、Ca をフラックスに添加することで六 角柱状の結晶が得られることが分かった。加えて、溶液攪拌により、種結晶上成長が促進 されることが明らかになった。これらの結果を踏まえて、従来で最も長い600時間育成を 行った結果、高さ 11 mm、幅 9.0 mm、X 線ロッキングカーブ半値幅が 20~50 秒と極めて良 好な結晶性を有する六角柱状バルク GaN 単結晶成長に成功した。

研究成果の概要 (英文):

The seeded growth of bulk GaN single crystals on a small GaN seed was performed by Na flux method. The addition of carbon into Ga/Na solution prevented the formation of polycrystals on a crucible wall, resulted in the promotion of GaN growth on a seed. Sr, Ba and Ca additives changed the growth habit from pyramidal shape to prism shape. In addition, the growth rate on a seed dramatically increased by stirring the solution. Using these techniques, the long-term growth of 600 h enabled to obtain the prism-shaped bulk GaN single crystal (9.0 mm width and 11 mm height, with full widths at half maximum of GaN (10-11) X-ray rocking curve of 20 $^{\sim}$ 50 arcsec).

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2008 年度	10, 000, 000	3, 000, 000	13, 000, 000
2009 年度	2, 800, 000	840, 000	3, 640, 000
2010 年度	2, 100, 000	630, 000	2, 730, 000
年度			
年度			
総計	14, 900, 000	4, 470, 000	19, 370, 000

研究分野:工学

科研費の分科・細目:電気電子工学・電子電気材料工学

キーワード: 窒化ガリウム、Na フラックス法、液相エピタキシャル、溶液攪拌

1. 研究開始当初の背景

携帯電話や信号機用の白色・青色 LED や Blue-ray 用半導体レーザーに用いられてい る GaN 系デバイスの応用は、蛍光灯に代わる 固体照明、ハイブリッドカーや高速通信用の

高周波・パワーデバイスなどに広がろうとし ている。その実現、普及には、Si や GaAs の ように転位密度、点欠陥、及び歪が極めて少 ない4インチ以上の大型 GaN バルク結晶を液 相から育成し、高品質基板が低コストで作製

できることが重要となる。

研究開始当初、基板用 GaN 単結晶育成は HVPE 法によって実用化が達成されたが、実用 化後は様々な工夫が試みられているにも関 わらず、転位密度は2インチ全体で106/cm2 程度と高く、熱膨張係数差に起因する歪(反 り) の発生は不可避であった。大阪大学では、 Na フラックス法を用いた LPE 成長において、 2 インチで転位密度が 10⁴/cm²、XRD 半値幅が 50 秒の高品質 GaN 結晶の育成に成功した。し かしながら、Na フラックス法では、HVPE 法 で作製した GaN 種基板を利用するため、転位 密度は4桁程度減少するものの、種結晶の歪 (反り) に関してはそのまま引き継がれてい た。結晶中に大きな歪(反り)が残留したま までは、Si や GaAs の液相成長で実現されて いるレベルでの結晶の大型化・高品質化は困 難となる。結晶中の歪(反り)を無くすため には、歪(反り)のない種結晶の利用が必須 である。種結晶の候補として、Na フラックス 法の自然核発生により得られる結晶は、サイ ズが数 mm と小さいものの、非常に優れた品 質(転位密度:10º~10²/cm²、XRD 半値幅: 20 秒以下) であることが分かっていた。

2. 研究の目的

極めて低転位密度 (10°~10²/cm²) かつ低 歪な4インチサイズのGaNバルク結晶を育成 するためには、Na-Ga 溶液中の自然核発生に より得られた数 mm 程度の GaN 単結晶を種結 晶に用いて育成を長時間継続することが必 要となる。しかし、従来では Na フラックス 法におけるGaN結晶の育成速度は速くとも10 μm/h 程度であるため、4 インチにいたるまで は1年程度かかる計算になり、現実的ではな い。また、結晶育成中に種結晶外(育成容器 壁や溶液中)での核発生が継続的に起こって しまうため、大型化は不可能であった。本研 究の目的は、自然核発生で得られる微小 GaN 単結晶から、大型・無歪 GaN 単結晶を育成す ることであり、そのためには、(1)成長方位 制御、(2)成長速度の向上、(3)種結晶外核発 生抑制、(4)長時間成長に関する要素技術の 確立が必要である。

3. 研究の方法

各要素技術の確立に向けた具体的な研究 方法は以下のとおりである。

(1)成長方位制御・・・育成される GaN 結晶の形状(成長方位)を制御することは、バルク結晶からの基板の切り出し効率や、有極性面、及び無極性面など、目的とする面方位を優先的に大きくすることで、高効率で平板結晶の育成が期待できる。Na フラックス法では、溶液組成 (Ga/Na) の変化に加え、Ga、及び Naの他に微量元素を添加することでも、種結晶

上に成長する結晶の成長方位が変化する。例えば、Li添加系では、c軸に対して垂直方向(a、m方向)の育成速度が向上すること、C添加系ではc軸方向の成長が促進されることが分かっている。以上の背景より、Ga/Na組成制御による成長方位の制御に加えて、他の元素の微量添加によっても成長方位変化が期待されるため、様々な元素添加系における成長方位の変化を調査する。また、添加元素の結晶中への取り込み有無についても詳細に調べる。

- (2)成長速度の向上・・・成長速度を向上させるためには、溶液中への窒素溶解量の増加、及び成長界面への窒素の輸送速度を向上させることが必要となる。本研究では、溶液攪拌技術を高度化し、窒素溶解度、輸送速度の向上、及び溶液内窒素分布の均一化に向けた攪拌条件の検討を行う。
- (3)種結晶外核発生抑制・・・種結晶外に核発生が起こると、原料である窒素が種結晶外核の成長に使用され、種上結晶の成長速度が低下する。この問題に対して、これまで、C添加により核発生が抑制されることが見出され、C無添加系では10%程度であったLPE成長へのGa原料利用効率をC添加によりほぼ100%に増加させることに成功し、気相法で作製された板状GaN種結晶上に3 mm程度のGaN厚膜成長に成功している。そこで、C添加を微小GaN種結晶上成長に応用することで、バルク状GaN単結晶の高速成長を目指す。
- (4)長時間成長・・・バルク化に向けた長時間成長にあたり、坩堝の腐食が懸念される。これまでのアルミナ坩堝では、長時間の育成中に徐々に坩堝成分が溶液中に溶け出すことで、不純物の混入や、それに伴う成長速度の低下が起こる。そこで YAG 坩堝を用いて、微小 GaN 種結晶上への長時間成長(>300時間)を行い、育成時間と成長量、結晶形状、結晶性、及び坩堝に与える影響を検証した。

4. 研究成果

各要素技術研究における成果を以下に記載する。

(1)成長方位制御

①溶液組成依存性

Ga/Na組成比をパラメータとして、微小 GaN 単結晶上成長を行い、成長速度、結晶性、及び形状の溶液組成依存性を調査した。図1は成長速度と GaN(0002) X 線ロッキングカーブ半値幅(FWHM)の溶液組成依存性の結果である。成長速度は低 Ga 組成条件で速く、Ga 組成の増加とともに減少した。 X 線ロッキングカーブ半値幅は溶液組成に依存せず、種結晶

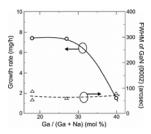
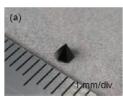



図1 成長速度、FWHM の溶液組成依存性

と同等の結晶性であった。図 2(a)、(b)に用 いた種結晶と Ga 組成 27 mo1%で成長した結晶 の写真を示す。図2より、2mm程度の六角錐 状種結晶上に、(0001)、(10-11)、及び(10-10) 面からなる六角錐台状の GaN 単結晶が成長し た。

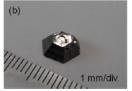


図2 種結晶とGa組成27 mol%で成長した結 晶写真

図3は、形状の溶液組成依存性である。低 Ga 組成条件では(0001)、(10-11)、(10-10) からなるプリズム状の形状であったが、Ga 組 成の増加とともに(10-10)が消滅し、(10-11) が支配的に発達したピラミッド状の形状に 変化することが明らかになった。以上の結果 から、成長速度、結晶性、形状を考慮すると 低 Ga 組成条件がバルク GaN 単結晶成長に有 利であると結論付けられる。

Ga composition (mol%)	18	27	40
Growth habit	1000ts	-0001s	15070-

図3 結晶形状の溶液組成依存性

②微量元素添加による形状制御

溶液組成制御により、成長速度、及び形状 制御が可能であることが明らかになったが、 低 Ga 組成においても(10-11)が残存する。そ こで、Ga/Na 溶液に微量元素を添加し、形状 の制御を試みた。図 $4(a) \sim (d)$ は、それぞれ Sr0.03 mol%, Ba 0.1 mol%, Ca 0.05 mol%, Ca 0.05 mol% + Li 0.13 mol% 添加した系で 得られた GaN 単結晶である。いずれの系にお いても(10-11)の発達は抑制され、主に (0002)、(10-10)からなる六角柱状の形状を 示すことが分かった。最近、Ba添加系で、200 時間成長でも高さ 7.5 mm、幅 9 mm の結晶が 得られている。これらの結晶育成では小型マ ッフル装置を使用しているため、溶液撹拌は

行っていないが、後述の高度化された溶液撹 **拌技術により、一層の高速成長が期待できる** ことが分かってきた。Ca-Li 添加系で得られ た図 4(d)の結晶は、Ca 添加系に特有の六角 柱状の形状を示し、かつ透明性が向上した。 Li 添加による効果は、過去、大阪大学より報 告されており、Ga/Na 溶液中への窒素溶解度 の増加が透明性を向上させると考えられて いる。Ca-Li 添加系の結果は、Na フラックス 法において複数元素の共添加により、複数効 果が同時発現する可能性を示唆するもので ある。

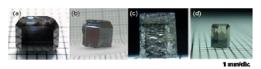
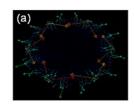



図 4 (a)Sr、(b)Ba、(c)Ca、(d)Ca-Li 添加系 で成長した結晶写真

(2)成長速度の向上

①フルーエントによる流体解析

流体計算ソフト (Fluent) を用いて、揺動 の有無による基板表面の流速の変化をシミ ュレートした。基板サイズ2インチ、揺動速 度 1rpm の条件で計算を行った。図 5(a)、(b) はそれぞれ揺動無し、有り(1 rpm)の条件に おける基板表面の溶液流速の計算結果を示 している。揺動無し(図 5(a))の条件では、 基板表面にほとんど流れが存在せず、基板端

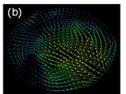


図 5 (a)揺動無し、及び(b)揺動 1 rpm の条件

における基板表面の流速計算結果

においてランダムな流れが存在することが 分かった。一方で、揺動を行った場合(図 5(b))、基板表面で均一な流れが形成され、 流速は揺動無しの場合と比較して約 30 倍(2 cm/sec)に増加することが明らかになった。

②各種攪拌機構の検証

高速成長に向けて、溶液攪拌方法・速度と結 晶の成長速度の関係を調べた。攪拌手法とし て、図 6(a)、(b)に示す 1 軸揺動機構および 回転攪拌機を採用し、各攪拌手法において、 攪拌速度と成長速度の関係を調査した。種結 晶は点状 GaN 結晶を用い、2 インチ径で 17 個 の種結晶を同心円状に配置した。各攪拌パタ ーンにおける結晶成長の様子、及び種結晶外 多結晶と種結晶上結晶の収率の変化をそれ ぞれ図7、8に示す。図7、8より、攪拌のな

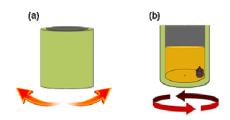


図 6 (a)揺動攪拌、及び(b)回転攪拌の概略図

い条件では種結晶上成長量が少なく、坩堝壁上に大量の多結晶が晶出した。加えて、種結晶上に成長した結晶のほとんどは骸晶化した。揺動攪拌では、1.5 rpm で多結晶が大幅に減少し、3.0 rpm で多結晶の発生はなくなった。また、揺動周期が増すにつれて収率が上昇し、成長した結晶の骸晶化が改善した。7.0 rpm で骸晶化が抑制され、各結晶の成長速度にばらつきがなく、総収率が最も高くなった。

回転攪拌では回転周期を30 rpm 一定とし、常に一定方向に回転し、一定周期ごとに停止する正転パターン、一定周期ごとの停止に加え、回転方向を反転させる反転パターンを行った。育成の結果、正転パターンでは攪拌なしに比べ、多結晶発生が大幅に減少し、収率が上昇したが結晶は骸晶化した。反転パターンでは多結晶の発生はなく、正転パターンと比較し高い収率が得られた。また結晶の骸晶化も大幅に改善した。

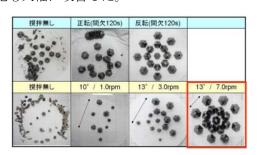


図7 各攪拌パターンにおける結晶成長の様子

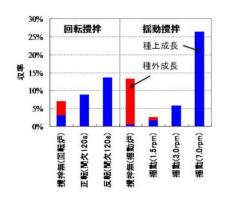


図 8 種結晶外多結晶、及び種結晶上収率の攪 拌パターン依存性

新しい攪拌機構として、3次元的に揺動可 能な4軸揺動攪拌を導入した。4軸揺動機構 にて、図9に示す各揺動パターンの攪拌効果 を検証するための実験を、傾斜角 10°、揺動 周期 1rpm の一定条件で行った。図 10 に示す ように従来の1軸揺動(図6(a))よりも4軸 攪拌は窒化率が上昇にており、より攪拌され ていることが示唆される。また、膜厚分布も 回転攪拌で改善され、大型結晶育成のために 4 軸攪拌が有望であることが分かった。この 4 軸攪拌条件にて、図 11 に示すように、φ4 インチサファイアテンプレート GaN 基板上全 面に LPE 成長することに成功した。まだ条件 が十分に検討されていないため結晶に着色 が見られるものの、平均膜厚は 1.3 mm で、 面内の厚さバラツキは62 インチと同等であ った。

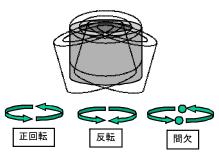


図9 4軸攪拌の概略図

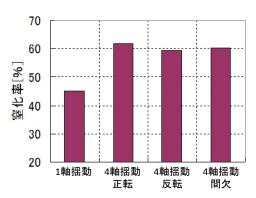


図 10 種結晶上、及び種結晶外成長量の炭素

以上の結果より、攪拌は溶液中の窒素濃度 分布の均一化、及び種結晶上への窒素輸送速 度の増加に極めて有用であることが明らか になった。

図 $11 \quad \phi 4$ インチテンプレート上に成長した LPE 結晶

(3) 種結晶外核発生抑制

微小 GaN 種結晶上成長において、C添加の効果を検証した。図 11 は微小種上成長量、及び種結晶外成長量のC添加量依存性である。微小種上成長においても、C無添加では種結晶外成長が見られたものの、C無添加では添加により種結晶外成長は抑制され、種上に成長する結晶の成長速度が増加することが分かった。

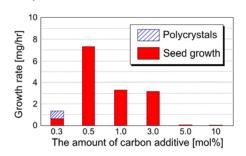


図 12 微小種結晶上成長量、及び種結晶外成

(4)長時間成長

YAG 坩堝を用いて、微小 GaN 種結晶上への長時間成長(>300 時間)を行い、育成時間と成長量、結晶性、及び坩堝に与える影響を検証した。本実験では、結晶形状を制御するため、Srを 0.03 mo1%添加した。図 13、14 に成長量、結晶写真の育成時間依存性を示す。図 13 より、成長量は育成時間とともに単調に増加することがわかり、これまでで最も長い600時間育成において、高さ11 mm、幅9.0 mmの六角柱状バルク GaN 単結晶成長に成功した(図 14(d))。また、Sr添加量 0.03 mo1%で得られた結晶の GaN (10-11) X 線ロッキングカーブ半値幅は 20 ~50 秒と極めて良好で

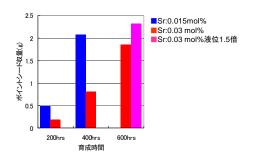


図 13 成長量の育成時間依存性

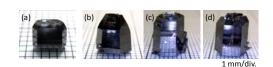


図 14 (a) 200 h、(b) 400 h、(c)(d) 600 h で成長した結晶写真. (a)~(c)は液深さ 11 mm、(d)は 15 mm

あった。しかし、図15に示すように、YAG坩堝重量は育成時間が長いほど増加するため、今後、Ga/Naに対する耐性の高い坩堝材探索が必要である。

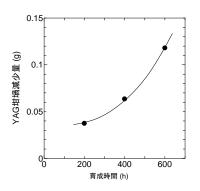


図 15 YAG 坩堝減少量の育成時間依存性

5. 主な発表論文等

[雑誌論文](計8件)

- 1. M. Imade, Y. Hirabayashi, Y. Konishi, H. Ukegawa, N. Miyoshi, M. Yoshimura, T. Sasaki, Y. Kitaoka, and Y. Mori, "Growth of Large GaN Single Crystals on High-Quality GaN Seed by Carbon-Added Na Flux Method," Appl. Phys. Express 3, 查読有, 2010, 075501-1 075501-3.
- 2. <u>Y. Mori, Y. Kitaoka, M. Imade</u>, F. Kawamura, N. Miyoshi, M. Yoshimura, and T. Sasaki, "Growth of GaN crystals by Na flux method," phys. stat. sol. (a) 207, 查読有, 2010, 1283-1286.
- 3. F. Kawamura, M. Morishita, N. Miyoshi, M. Imade, M. Yoshimura, Y. Kitaoka, Y. Mori, and T. Sasaki, "Study of the metastable region in the growth of GaN using the Na flux method," J. Cryst. Growth 311, 查読有, 2009, 4647-4651.
- 4. F. Kawamura, M. Tanpo, N. Miyoshi, <u>M. Imade</u>, M. Yoshimura, <u>Y. Mori</u>, <u>Y. Kitaoka</u>, and T. Sasaki, "Growth of GaN single crystals with extremely low dislocation density by two-step dislocation reduction," J. Cryst. Growth 311, 查読有, 2009, 3019-3024.
- 5. F. Kawamura, M. Morishita, M. Tanpo, M. Imade, M. Yoshimura, Y. Kitaoka, Y. Mori, and T. Sasaki, "Effect of carbon additive on increases in the growth rate of 2 in GaN single crystals in the Na flux method," Journal of Crystal Growth, Vol. 310, 查読有, 2008.6, 3946-3949.
- 6. D. Kashiwagi, R. Gejo, Y. Kangawa, L. Liu, F. Kawamura, <u>Y. Mori</u>, T. Sasaki, and K. Kakimoto, "Global analysis of GaN growth using a solution technique,"

Journal of Crystal Growth, Vol. 310, Issues 7-9, 査読有, 2008.4, 1790-1793.

[学会発表] (計 16 件)

- 1. <u>Y. Mori, Y. Kitaoka, M. Imade,</u> "Growth of bulk GaN crystal by Na flux method," SPIE Photonics West 2011/1/24, USA, 7939-01.
- 2. <u>Y. Mori</u>, <u>Y. Kitaoka</u>, <u>M. Imade</u>, N. Miyoshi, M. Yoshimura, T. Sasaki, "Growth of bulk GaN crystal by Na flux method," 2010 International Symposium on Crystal Growth, 2010/11/8, Korea, A-03.
- 3. <u>森勇介、北岡康夫、今出完</u>、吉村政志、 佐々木孝友, "Na フラックス法によるバルク GaN 結晶育成技術," GaN 系プラネットコンシ ャスデバイス・材料の現状, 2010/11/4, 東 北大学.
- 4. Y. Mori, Y. Kitaoka, M. Imade, N. Miyoshi, M. Yoshimura, T. Sasaki, "Growth of bulk GaN crystal by Na flux method," Korea-Japan Workshop on Semiconductors for Energy Saving and Harvesting, 2010/10/11, Korea.
- 5. <u>M. Imade</u>, Y. Hirabayashi, Y. Konishi, H. Ukegawa, N. Miyoshi, M. Yoshimura, T. Sasaki, <u>Y. Kitaoka</u>, <u>Y. Mori</u>, "Seeded growth of GaN single crystals by Na flux method," 29th Electronic Materials Symposium(EMS-29), 2010/7/16, Shizuoka, Fr1-2.
- 6. Y. Mori, Y. Kitaoka, M. Imade, N. Miyoshi, M. Yoshimura, T. Sasaki, "Growth of bulk GaN crystal by Na flux method," 3rd International Symposium on Growth of Nitrides, 2010/7/5, France, Mol-1.
- 7. 森勇介、北岡康夫、今出完、吉村政志、佐々木孝友、"Na フラックス法によるバルク GaN 結晶育成技術、"窒化物ナノ・エレクトロニクス材料研究センター講演会、バルク GaN 単結晶育成技術の現状、2010/1/7、東北大学8. Y. Mori、Y. Kitaoka、M. Imade、F. Kawamura、N. Miyoshi、M. Yoshimura、T. Sasaki、"Growth of GaN Crystals by Na Flux LPE Method、" The 8th International Conference on Nitride Semiconductors (ICNS-8)、2009/10/19、Jeju、Korea、B1 (invited)
- 9. F. Kawamura, N. Miyoshi, M. Imade, M. Yoshimura, Y. Kitaoka, Y. Mori, and T. Sasaki, "Growth of high-quality large GaN crystal by Na flux LPE," SPIE Photonics West 2009 LASE 2009, San Jose, USA, 2009/1/24-29, paper7216-10.
- 10. F. Kawamura, S. Katsuike, Y. Hirabayashi, Y. Kitano, N. Miyoshi, <u>M.</u> <u>Imade</u>, M. Yoshimura, <u>Y. Kitaoka</u>, T. sasaki,

and <u>Y. Mori</u>, "Recent progress in the growth of GaN single crystals using the Na flux method," Asia Core Workshop on Wide Bandgap Semiconductors (ACW), 2008/10/22-23, Kwangju, Korea.

11. Y. Mori, F. Kawamura, N. Miyoshi, M. Imade, M. Tanpo, S. Katsuike, Y. Hirabayashi, Y. Kitaoka and T. Sasaki, "Growth of high-quality large GaN crystal by Na flux LPE method," The 4th Asian Conference on Crystal Growth and Crystal Technology (CGCT-4), 2008/5/21-24, Miyagi, Japan.

〔図書〕(計1件)

1. 森勇介,川村史朗,北岡康夫,吉村政志, 佐々木孝友, "Na フラックス LP 法による大 型高品質 GaN 結晶育成技術の現状と展望," 豊田合成技報, Vol. 50, No. 1, pp. 2-7 (2008. 6)

6. 研究組織

(1)研究代表者

森 勇介 (MORI YUSUKE) 大阪大学・工学研究科・教授 研究者番号:90252618

(2)研究分担者

北岡 康夫 (KITAOKA YASUO) 大阪大学・工学研究科・教授 研究者番号:70444560

今出 完 (IMADE MAMORU) 大阪大学・工学研究科・特任助教 研究者番号: 40457007

川村 史朗 (KAWAMURA FUMIO) 大阪大学・工学研究科・研究員 研究者番号:80448092