科学研究費補助金研究成果報告書

平成 23 年 4 月 18 日現在

機関番号: 22604

研究種目:若手研究(A) 研究期間:2008 ~ 2010

課題番号:20684006

研究課題名(和文)マイクロマシン技術を用いた超軽量・高角度分解能宇宙×線望遠鏡の開発

研究課題名(英文) Development of a novelultra light-weight and high angular resolution space X-ray telescope based on micromachining technologies

研究代表者

江副 祐一郎 (EZOE YUICHIRO) 首都大学東京·理工学研究科·助教

研究者番号:90462663

研究成果の概要(和文): 高感度の宇宙 X 線観測にとって、天体からの微弱な X 線を集光結像 する X 線望遠鏡は今や欠かせない。本研究では次世代の衛星を目指して、マイクロマシン技術 を用いたオリジナルの方式の開発を行った。そして世界で初めて、本方式での鏡の試作と X 線反射の実証、望遠鏡 1 段分の試作と X 線結像の実証などに成功した。

研究成果の概要(英文): High performance and light-weight space X-ray telescopes are now recognized as a key technology for next generation X-ray astronomy satellites. We are developing a novel ultra light-weight X-ray optics based on micromachining technologies. For the first time in the world, we have succeeded to verify X-ray reflection using Si and Ni X-ray mirrors fabricated by our method and to verify X-ray imaging using a test Si optics.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2008 年度	3, 400, 000	1, 020, 000	4, 420, 000
2009 年度	3, 900, 000	1, 170, 000	5, 070, 000
2010 年度	4, 500, 000	1, 350, 000	5, 850, 000
年度			
年度			
総計	11, 800, 000	3, 540, 000	15, 340, 000

研究分野:数物系科学

科研費の分科・細目:天文学・天文学 キーワード: X線γ線天文学、X線望遠鏡

1. 研究開始当初の背景

高感度の宇宙 X線観測にとって、天体からの 微弱な X線を集光結像する X線望遠鏡は今や 欠かせない。大気圏外での観測が必要な X線 天文では、高分解能・大面積かつ軽量という 困難な条件が望遠鏡に要求される。従来は、厚い基板を非球面に正確に研磨する方法、母型からレプリカを作る方法、薄い Al フォイルを変形する方法する方法が取られてきた。しかし、高い角度分解能を達成しようとすると、鏡が厚くなり、望遠鏡が重くなるという 欠点があった。

衛星計画の巨大化や中小型衛星のニーズの

高まりと共に、軽量でより分解能の良い X線望遠鏡が強く求められている。そこで注目されているのがマイクロポアオプティクス(微細な穴の光学系)である。 $10\sim1000~\mu$ m の大きさの微細な穴構造を作り、その内壁を X線反射鏡として利用することで、鏡を縮小化し、軽量化する。欧州や米国では、表面研磨したシリコン基板を組んで穴構造を作る方法、ガラスファイバー内壁での全反射を利用する方法が提案され、開発されてきた。

我々は世界最軽量のマイクロポアオプティクスとして、日本が世界をリードするマイクロマシン技術を用いた独自の望遠鏡を提唱

し、世界に先駆けて開発を行ってきた。数百 μ m の薄いシリコン基板に結晶異方性エッチングを用いて幅 10μ m ほどの貫通穴を開け、その側壁をX線鏡として用いる。穴を超微細にできるため、世界で最軽量のマイクロポアオプティクスになる上、従来一枚一枚手作りであった鏡を、一括して大量生産できる。我々はこの手法で世界で初めてX線反射および結像に成功した。

2. 研究の目的

我々は、シリコン結晶異方性エッチングで製作した鏡面を用い、軽量化の概念を実証してきた。結晶異方性エッチングとは、異なる結晶の薬液に対するエッチング速度の違ないで、動用したの薬がして、変換がでは、原理的に平面を入びでででであるが、原理的に平面しか得られず、10mm 角程度の鏡チップを多数並べて、理想曲面を角線近は鏡チップのサイズと焦点距離、チップの配置誤差に依存し、数分角に制限される。軽量性を保ったまま、角度分解能を向上するため、我々は新たな手法を考案した。

この手法により、我々は、これまで世界最軽量であった日本のすざく衛星の望遠鏡を、2桁軽量化しつつ、角度分解能を1桁改善した「1000平方cmの面積と10秒角の角度分解能を備えた、kgクラスの世界最軽量X線望遠鏡」を目指す。

3. 研究の方法

(1)シリコンドライエッチングもしくは(2)X線 LIGAを用いて製作した軽量 X線反射用の微細な曲面穴構造を、(3)アニールにより側壁を平滑化した後に、(4)磁気流体を用いて研磨し、(5)基板を塑性もしくは弾性変形を用いて高精度に変形し、1回反射分とする。1回反射では原理的に結像性能の良い望遠鏡とはならないため、(6)曲率半径の異なる基板を2もしくは4枚重ねて多段望遠鏡として完成する。

この方法で完成する望遠鏡は、我々のオリジナルである。さらに、これらの鍵となる基礎技術について、それぞれ日本を代表する研究者たちとタッグを組んで、研究を推進する。

4. 研究成果

我々は 2008 年度から 3 年間、本研究費の支援を受けて、以下を達成した。

(1) 2008 年度: (1) \sim (4) の要素技術の基礎開発を開始し、シリコンおよびニッケルのミニチュア光学系(7.5 mm 角の鏡チップ) を製作した。300 μ m 程度の厚みの基板に曲面穴が多数空いた構造を持ち、側壁はアニールもしくは研磨により平滑化した。我々は Λ 1 K α

1.49~keV~のX線に対して、この手法で製作した Si~および Ni~鏡の全反射を世界で初めて実証した。

(2)2009 年度: (1) ~ (5)の技術開発を進めて、4 インチシリコン多段反射望遠鏡の1段分を目指し、シリコンドライエッチングの条件出しを行った。そしてアニールによる平滑化と、高温塑性変形による変形を行って、1段分の試作に成功し、可視光による結像実証を済ませた。平行して磁気研磨とアニールを組み合わせたシリコン鏡面の平滑化を行って、鏡面粗さ<1 nm という従来の宇宙 X 線反射鏡に匹敵する性能を達成した。

(3) 2010 年度: 2009 年度に完成した 4 インチシリコン多段反射望遠鏡を JAXA 宇宙科学研究所 30 m ビームラインに持ち込み、初の X 線結像試験を行い、A1 K α 1.49 keV にて世界で初めての結像実証に成功した。さらに 2 段望遠鏡の完成を目指して、2 枚の基板の高精度アラインメント装置をデザインし、完成した。また X 線 LIGA を用いた Ni 望遠鏡 1 段分の製作に目処を付けた。

以上の開発を通じ、我々は世界で最軽量かつ 高分解能の望遠鏡を完成するための基礎実 証を着実に達成することができた。本開発に 関連して3大学で4本の修士論文(東京大学、 首都大学東京、フロリダ大学)と1本の博士 論文(立命館大学)がまとめられたことも付 記したい。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者には下線)

[雑誌論文] (計 12 件)

- 1. Ikuyuki Mitsuishi、<u>Yuichiro Ezoe</u> (2番目)、ほか 10名、「Optical image analysis of the novel ultra-lightweight and high-resolution MEMS X-ray potics」、IEEE J. Quantum Electron.、査読有、2010、46、1309
- 2. <u>Yuichiro Ezoe</u> 、ほか 5 名、「Simulation-based study of MEMS X-ray optics for Microanalysis」、IEEE J. Quantum Electron.、査読有、2010、46、1295
- 3. Raul E. Riveros、Yuichiro Ezoe (6番目)、 ほか8名、「Development of an alternating magnetic field assisted finishing process for MEMS micropore X-ray optics」、Applied Optics、査読有、2010、49、3511

- 4. Hitomi Yamaguchi, <u>Yuichiro Ezoe</u>(5番目)、ほか 6名、「Magnetic field assisted finishing for micro-pore X-ray focusing mirrors fabricated by deep reactive ion etching」、CIRP Annals、査読有、2010、59、351
- 5. Yuichiro Ezoe、ほか 15 名、「Ultra light-weight and high-resolution X-ray mirrors using DRIE and X-ray LIGA techniques for Space X-ray Telescope」、Microsystem Technologies、査読有、2010、16、1633
- 6. Raul E. Riveros、Yuichiro Ezoe (5番目)、ほか 7名、「Magnetic field assisted finishing of ultra-lightweight and high-resolution MEMS X-ray micro- pore optics」、Proceedings of SPIE、査読無、2009、7360、736042
- 7. Ikuyuki Mitsuishi、<u>Yuichiro Ezoe</u> (2番目)、ほか 13名、「Novel ultra-lightweight and high-resolution MEMS X-ray optics」、Proceedings of SPIE、2009、査読無、7360、736049

ほか査読有1件、査読無4件。

[学会発表] (計 24 件)

- 1. <u>Yuichiro Ezoe</u>、ほか 17名 「MEMS-Based X-ray Optics for Future Astronomy Missions」、IEEE Optical MEMS、2010年8月、札幌
- 2. Ikuyuki Mitsuishi、ほか 17 名、「X-Ray Imaging Test for a Single-Stage MEMS X-Ray Optical System」、IEEE Optical MEMS、2010年8月、札幌
- 3. Ikyuki Mitsuishi、ほか 8 名、「Optical image analysis of the novel ultra-lightweight and high-resolution MEMS X-ray optic」、IEEE Optical MEMS、2009 年 8 月、フロリダ
- 4. <u>Yuichiro Ezoe</u>、はか 5名「Micromachined Reflective X-ray Concentrator For Microanalysis」、IEEE Optical MEMS、2009 年8月、フロリダ
- 5. <u>江副 祐一郎</u>、「宇宙X線望遠鏡への応用」、 JSPS 結晶成長の科学と技術 161 委員会、 2010年5月、JST 仙台(招待講演)
- 6. 江副 祐一郎、「マイクロマシン技術を用い

た宇宙X線望遠鏡の開発」、立命館大学SR センター研究成果報告会、2008 年 6 月、 立命館大(招待講演)

ほか国内9件、海外9件。

[図書] (計0件)

[産業財産権]

○出願状況(計5件)

名称: X 線反射装置

発明者:満田 和久、石田 学、江副 祐一郎、

中嶋 一雄

権利者:満田 和久、石田 学、江副 祐一郎、

中嶋 一雄種類:特許

番号:特許公開 2010-25723

出願年月日:2008年07月18日

国内外の別:国内

名称: X 線反射装置及びその製造方法

発明者:満田 和久、江副 祐一郎、中嶋 一

雄、山口 ひとみ

権利者:満田 和久、江副 祐一郎、中嶋 一

雄、山口 ひとみ

種類:特許

番号:特許公開 2010-85304

出願年月日:2008年10月01日

国内外の別:国内

名称: X 線光学系

発明者:江副 祐一郎、三石 郁之、満田 和

久

権利者:江副 祐一郎、三石 郁之、満田 和

久

種類:特許

番号:特願 2010-179236

出願年月日:2010年08月17日

国内外の別:国内

名称:中性子光学系

発明者:江副 祐一郎, 高橋 忠幸, 満田 和

久,加藤 昌浩

権利者:江副 祐一郎, 高橋 忠幸, 満田 和

久, 加藤 昌浩

種類:特許

番号:特願 2010-236859

出願年月日:2010年10月21日

国内外の別:国内

ほか海外1件。

○取得状況(計0件)

〔その他〕
ホームページ等
6. 研究組織
(1)研究代表者
江副 祐一郎 (EZOE YUICHIRO)
首都大学東京・大学院理工学研究系・助教研究者番号:90462663
(2)研究分担者なし () 研究者番号:
(3)連携研究者

なし () 研究者番号: