機関番号： 10101
研究種目：若手研究（B）
研究期間： $2008 ~ 2010$
課題䎹号： 20700001
研究課題名（和文）連続データストリームに対する高度なパターン照合の研究
研究課題名（英文）Studies on Advanced Pattern Matching over Continuous Data Streams
研究代表者
喜田 拓也（KIDA TAKUYA）
北海道大学•大学院情報科学研究科•准教授
研究者番号：70343316

研究成果の概要（和文）：連続データストリームに対する高速•高度なパターン照合技術およ びそのためのデータ圧縮技術について研究を行った。前者については，ビットパラレル手法に基づいた，多次元データストリームに対する複雑なクエリを許すパターン照合アルゴリズム BPS（Bit－Parallel on Streams）を提案した。これにより，文字情報のみならず，数値データや分類データなどが複雑に組み合わさったクエリをデータストリームに対して行うことができる ようになった。後者については，VF 符号（Variable－to－fixed－length code）に基づいた，パタ ーン照合に適した新規のデータ圧縮法 STVF 符号（Suffix Tree based VF coding）を開発した。 この圧縮法は，既存の著名な圧縮法と同程度の圧縮率を達成しながらも，文書中のキーワード検索が高速•簡便に行えるという優れた特徴を持つ。

研究成果の概要（英文）：I have studied high speed and advanced pattern matching over continuous data streams and also about compression technique for realizing that．For the former，I have proposed a pattern matching algorithm，named BPS，which is based on bit－parallel techniques and allows complex queries for multi－dimension data streams．By the algorithm，we can search over data streams for queries that highly combined with numerical data and categorical data as well as text data．For the latter，I have developed a novel data compression method，named STVF coding，which is based on VF coding and suitable for pattern matching．The method has a good feature of allowing doing keyword search in simple and quick manners，as it gains high compression ratios as well as existent well－known compression methods．

交付決定額

	直接経費	（金額単位：円）	
2008 年度	$1,200,000$	間接経費	合 計
2009 年度	$1,300,000$	360,000	$1,560,000$
2010 年度	800,000	390,000	$1,690,000$
年度		240,000	$1,040,000$
年度			
総 計	$3,300,000$		$4,290,000$

[^0]1．研究開始当初の背景
高速インターネット技術と大容量記憶装置技術の進展に伴い，膨大な量の機械可読な文書が生成され，また流通するようになった。個人が持つ電子メールのアーカイブや私的 な情報データベースでさえギガバイトの容量を必要としきている。したがって，効率の よい情報検索技術の開発は必須である。パタ ーン照合技術は情報検索の重要な基本技術 の一つであり，これまでにも多くの研究者ら によって研究が行われている。

このような大量の文書データ（テキストデ ータ）は，保存コストあるいはその通信コス トを低減するために圧縮して保存されるこ とが多い。そこで，このような圧縮テキスト に対して，それを元の文書データに展開する ことなく文字列の検索（パターン照合）を行 う要求が生じた。これに対し，申請者らはこ れまで，LZW 圧縮法に対するパターン照合 アルゴリズム（Kida 他，1998）や Byte pair encoding（BPE）圧縮法に対するアルゴリズ ム（Shibata 他，2000）を開発してきた。特 に，BPE 圧縮法に対するパターン照合アルゴ リズムでは，圧縮していない元の文書テキス トに対してパターン照合する場合に比べて， およそ圧縮率程度の時間でパターン照合を行えることを示した。すなわち，BPE 圧縮法 はパターン照合処理を高速化するといえる。

また一方では，XML ファイルや HTML フ アイルのような，タグを単位とした木構造を内部表現に持つ半構造データと呼ばれる文書データが急増し，これら半構造データに対 して構造を考慮したパターン照合を行ら必要が出てきた。これまで，半構造データに対 してパターン照合を行うには，一旦元のテキ ストデータから木構造を抽出しなければな らなかった。しかしながら，この方法では非常に時間がかかる上に巨大なメモリを必要 とするため，大量のテキストデータに対して実用的ではなかった。これに対して，申請者 らは，木構造を抽出することなしに高速にパ ターン照合を行う手法を開発した（Takeda他，2002）。
さらには，様々な分野のテキスト情報に関 する知識体系がシソーラスや分類階層とい った形でデータベース化され手に入るよう になってきたことから，テキストデータを単 なる文字列として扱らのではなく，それに関 する背景知識を考慮にいれた複雑なパター ン照合についても取り組んできた（Kida 他，
2004～）。すなわち，これはテキストの意味的な構造を考慮したパターン照合の技術で ある。

このように，申請者は，パターン照合技術 に関してその高速化および高度化に取り組 んできた。

近年，自動測定技術の発展により，センサ

ーデータや通信記録などの連続データスト リームに対する大規模データ処理が重要に なっている。こうしたストリーム型のデータ に対してパターン照合を行う場合，単純な文字列の照合とは異なる困難さがある。第一に，入力データ系列の各要素は，検索パターンの各要素に対してある程度の誤差を許して一致していればよく，厳密に一致する性質を利用した文字列照合の技術がそのままでは適用できない。第二に，照合処理の過程におい てリアルタイム性が要求され，また過去のデ ータに対してアクセスすることが困難であ ることが挙げられる。
サンプリングされるデータは実数の場合 が多いが，この例では簡単のために整数の列 としている。Harada［2002］や Sadri－Zaniolo ［2001］らは，よく知られた文字列照合手法で ある KMP 法および BM 法を関係データスト リーム上のパターン照合に適用する手法を提案した。それらの手法では，パターン中の述語間の依存関係を静的に解析することで実行の高速化を図っている。しかしながら， これらは最悪時の時間計算量がパターン長 m とテキスト長 n に対して $\mathrm{O}(\mathrm{mn})$ 時間であり， Naïve な手法と変らない。また，元にしたア ルゴリズムの制約のため，拡張性にも乏しい という欠点がある。

こうした状況から，高速かつ柔軟性が高い，実用に耐えうるアルゴリズムの開発が切望 されている。

2．研究の目的

本研究では，連続データストリームに対す る高速•高度なパターン照合技術の確立を目指している。具体的には，連続データストリ ームに適した検索パターンの形式を定式化 し，理論的にすぐれた計算量を持つ照合アル ゴリズムを開発する。そして実際に実装し， アルゴリズムの性能を実証する。

申請者らは既に，古典的な文字列照合手法 である KMP 法や BM 法とは異なる考え方に基づいた，ビットパラレル手法と呼ばれる照合手法を連続データストリーム上のパター ン照合に適用し，理論的に効率のよい照合ア ルゴリズムを一つ得ている（Saito 他，2007）。今回の研究期間内には，このアルゴリズムを元に以下のような拡張を課題とする。

1 ）複数の本数のデータストリームが同時 に流れてくる状況へ対応する。

2）複数のパターンを同時に照合可能にす る。

3）パターンに対して，時系列方向に多少 の伸縮を許した一致を可能にする。

こうした拡張により，幅広い実問題への応用が可能となる。また，より複雑なパターン への拡張について検討し，その理論的解析を行う。最終的には，上述したアルゴリズムを

実際に実装し，オープンに利用可能なパター ン照合ライブラリの整備を行う。

3．研究の方法

本研究では，これまで申請者らが研究を進 めてきたパターン照合技術に基づき，新たに連続データストリームに対する高速•高度な パターン照合を開発することを目的として いる。そのため，以下の二つの項目について研究を行う。
（1）複数の本数のデータストリームが同時 に流れてくる状況への対応。

これまでの研究では，データストリームの モデルとして最も基本的なもの，すなわち，単一の実数値データが時間ごとに入力され る場合のみが扱われてきた。気温や震度など の一次元のデータストリームに対してはそ れで十分であるが，例えば風向•風速データ や多重音声データ，モーションデータのよう な多次元のデータストリームに対しては一次元用に開発したアルゴリズムを単純には適用できない。また，数値データに伴って属性値データが共にデータストリームとなっ て入力される場合など，複数種類のデータが同時に流れてくるといった状況が考えられ る。このように，より実用的な用途に対して適用するには，多次元データストリームに対 する効率よいアルゴリズムが不可欠である。

これに対する最も単純な方法としては，多次元のデータストリームを一次元ごとにパ ターン照合し，すべての次元においてパター ンが一致する部分を検出する方法が考えら れる。しかしながら，これでは次元数倍かそ れ以上の時間がかかり高速化が望めない。一方で，多次元データを一次元に写像すること で照合を行う方法もあるが，入力データの値域が莫大になるばかりか，検索パターンが複雑なものになってしまい，パターン照合に必要となる補助領域が爆発的に増えてしまう という欠点がある。加えて，パターンの述語間の依存関係も複雑なものとなってしまう ため，照合速度も低下する。

こうした問題を解決し，多次元データスト リームに対する少メモリで効率のよいパタ ーン照合アルゴリズムの開発を目指す。現在 のところ，各次元のデータストリームに対す るパターン中の述語が他の次元の述語と依存関係をもたない場合には，アルゴリズム BPS を，メモリ使用量を抑えつつ多次元に拡張できることの見通しが立っている。
（2）連続データストリームに対する複数パ ターンの同時照合。

一つの連続データストリームに対して，検知したいパターンは大抵の場合に複数個存在するので，複数の検索パターンを同時に照合できると実用的にも都合が良い。複数パタ ーンを同時に照合する文字列照合アルゴリ

ズムとしては Aho－Corasick 照合機械が良く知られているが，これは入力データとパター ンとが厳密に一致する場合でしか用いるこ とができない。
最も単純な解決策としては，入力データス トリームに対して，パターンの個数分だけ照合アルゴリズムを走らせる方法が考えられ る。しかし，これでは当然ながら，パターン の個数に比例して照合時間が増大してしま うという問題が生じる。パターン数が少ない間は使用に耐えうるかもしれないが，実用的 には Aho－Corasick 照合機械と同様に，パタ ーン数になるべく依存しない手法が望まし い。アルゴリズムBPS の元となるビットパラ レル手法では，複数パターンへ拡張する手法 が既に確立されている。ただし，同じように アルゴリズム BPS を複数パターンへ拡張でき るかどうかについてはまだ判っていない。
（3）パターンの正規表現への拡張。
文字列パターンの照合の場合と同様に，あ る種の正規表現でもってパターンを記述で きることが望ましい。例えば，任意の要素に一致するワイルドカードや，パターンのある部分の繰り返しを記述できるようになると ユーザーの利便性が向上する。ビットパラレ ル手法自体は非常に拡張性の高いアルゴリ ズムであるので，アルゴリズム BPS も同様に拡張できることが期待できる。ただし，ビッ トパラレル手法のパフォーマンスを保った まま，文字列照合における正規表現と同程度 にパターンの記述力を高めることは困難で あることが判明している。そこで，実用的な照合速度とメモリ使用量に対して，どこまで パターンの記述力を高められるかについて検討する。
（4）時系列方向へ伸縮を許したパターン照合．
センサーデータ等の連続データストリー ムにおいては，変動の仕方が同じ傾向である とみなせる部分であっても，その時間間隔は一定でないことが多い。すなわち，時系列方向に対してある程度の伸縮を考慮した上で パターンと一致するかどうかを判断できる ことが望ましい。これを解決するための手法 として Dynamic Time Warping（DTW）法がよく知られているが，動的計画法に基づいている ために計算コストが高いという欠点がある。 したがって，連続データストリームに対する パターン照合に適した，より高速な手法に関 して研究を行う。

4．研究成果

H20 年度は，これまでに得られた多次元の数値データストリームに対するパターン照合に，文字列型データストリームや分類階層概念型データストリームに対するパターン照合を組み合わせ，より複雑なクエリに対す

る統合的な照合システムの枠組みを提案し た。

一方で，巨大なストリームデータを蓄える ための検索可能なデータ圧縮技術の要求も高まっており，検索効率を保ちつつ圧縮率の高い圧縮法の開発に取り組むことになった。 その結果，刈り込み接尾辞木を利用すること で，圧縮後の符号語がす心゙て等しいというパ ターン照合に適した特徴を備えつつ，既存の ハフマン符号などよりも高い圧縮率を得ら れる STVF 符号化と名付けた新しい圧縮法の開発に成功した。
H21年度は，そのSTVF符号上で効率良くパ ターン照合を行う手法について，新規なアル ゴリズムを考案し，理論的観点から考察した。 また，STVF 符号のさらなる改良を行うために，既存手法の調査および詳細な実験を行った。
H22 年度は，STVF 符号の圧縮率を高めるた めに，辞書木を学習によって強化する手法を提案し，実際に既存の最も良いと考えられて いる圧縮ツールである gzip 並みに圧縮率を高めることに成功した。また，STVF 符号上で の実際の情報検索のパフォーマンスについ て総合的な試験を行った。

上記に加えて，本研究成果の各種データス トリーム（ブログ，音楽データ，圧縮画像デ ータなど）への技術応用について，検討と試験的な実験を行い，それぞれにおいて実用上 の有望な結果を得た。

5．主な発表論文等

（研究代表者，研究分担者及び連携研究者に は下線）

〔雑誌論文〕（計 5 件）

（1）Takashi Uemura，Daisuke Ikeda，Takuya Kida，and Hiroki Arimura， Unsupervised Spam Detection by Document Probability Estimation with Maximal Overlap Method，査読有，人工知能学会論文誌，Vol．26，No．1， 297－306，Jan． 2011.
（2）喜田拓也，分節木と共用文字列で表現さ れる符号上での効率良い圧縮照合アル ゴリズム，査読有，電子情報通信学会和文論文誌，Vol．J93－D，No．6，733－741， Jun． 2010 ．
（3）喜田拓也，STVF 符号：頻度刈り込み接尾辞木を用いた効率良い VF 符号化，査読有，日本データベース学会論文誌DBSJ Journal，Vol．8，No．1，125－130，June 2009.
（4）H．Sakamoto，S．Maruyama，T．Kida，S． Shimozono：A space－saving approximation algorithm for grammar －based compression，査読有，IEICE

Trans．on Information and Systems E92－D（2）：158－165（2009－2）．
（5）上村卓史，喜田拓也，有村博紀，ウェ ブ閲覧における効率的なキーワード抽出とその利用，査読有，情報処理学会論文誌：データベース（TOD），Vol．38， pp．49－60，2008年6月。

〔学会発表〕（計 15 件）
（1）Satoshi Yoshida and Takuya Kida，On Performance of Compressed Pattern Matching on VF Codes，Proc．of Data Compression Conference 2011，p．486， Utah，USA，March 30， 2011.
（2）Takashi Uemura，Takuya Kida，Satoshi Yoshida，Tatsuya Asai and Seishi Okamoto，Training Parse Trees for Efficient VF Coding，Proc．of the 17th Symposium on String Processing and Information Retrieval（SPIRE2010）， LNCS 6393，pp．179－184，Los Cabos， México，October 12， 2010.
（3）Satoshi Yoshida and Takuya Kida，An Efficient Algorithm for Almost Instantaneous VF Code Using Multiplexed Parse Tree，In Proc．of Data Compression Conference 2010 （DCC 2010），219－228，Utah，USA，March 25， 2010.
（4）Takuya Kida，Suffix Tree Based VF－Coding for Compressed Pattern Matching，In Proc．Data Compression Conference 2009，IEEE press，p．449， Utah，USA，March 17， 2009.
（5）Hideyuki Ohtani，Takuya Kida，Takeaki Uno，Hiroki Arimura，Efficient Serial Episode Mining with Minimal Occurrences，Proc．of The 3rd International Conference on Ubiquitous Information Management and Communication（ICUIMC 2009），471－479， Suwon，Korea，January 16， 2009.
（6）Takuya Kida，Tomoya Saito，and Hiroki Arimura，Flexible Framework for Time－Series Pattern Matching over Multi－Dimension Data Stream， Proc．the First International Workshop on Algorithms for Large－Scale Information Processing in Knowledge Discovery（ALSIP 2008），in conjunction with PAKDD 2008，5－16， Hotel Seagull Tempozan，0saka，May 20， 2008.

〔図書〕（計 1 件）
（1）中野 智晴，喜田 拓也：JPEG 画像に対 する 2 次元近似パターンマッチング，画像ラボ 日本工業出版，2009／09／05 発売号（9月号），pp．6－11．

〔その他〕
ホームページ等
http：／／www－ikn．ist．hokudai．ac．jp／${ }^{\text {kida／}}$ publication．html

6．研究組織
（1）研究代表者
喜田 拓也（KIDA TAKUYA）
北海道大学•大学院情報科学研究科•准教授研究者番号：70343316
（2）研究分担者 なし
（3）連携研究者
なし

[^0]: 研究分野：総合領域
 科研費の分科•細目：情報学•情報学基礎
 キーワード：アルゴリズム理論

