科学研究費補助金研究成果報告書

平成23年 5月31日現在

機関番号: 1 6 4 0 1 研究種目: 若手研究(B) 研究期間: 2008~2010 課題番号: 2 0 7 4 0 2 0 0 研究課題名(和文) A サイト秩序型ペロブスカイト酸化物の核磁気共鳴(NMR)による研究 研究課題名(英文) NMR study of an A-site-ordered perovskite system 研究代表者 加藤 治一 (KATO HARUKAZU) 高知大学・教育研究部自然科学系・准教授 研究者番号: 6 0 3 6 3 2 7 2

研究成果の概要(和文): ペロブスカイト型構造のAサイトに複数のイオンが規則的に入った 化合物 A'Cu₃Ru₄O₁₂(A'=Ca,Sr,La等)について核磁気共鳴(NMR)法を用いて電子の微視的 な性質を調べた。A'に二価の非磁性イオン(Ca,Sr)が入る系について、T_x~180K(Ca)、200K(Sr) 付近で顕著な状態密度の変化が起こることを初めて明らかにした。これはCu-Ruイオン間の 電荷移動と関連づけられ、電子相関が物性に与える影響を考える上で興味深い。

研究成果の概要(英文): I have carried out nuclear magnetic resonance (NMR) studies of an A-site-ordered perovskite system A'Cu₃Ru₄O₁₂ (A'=Ca,Sr,La and so on). The effective density of states in CaCu₃Ru₄O₁₂ and SrCu₃Ru₄O₁₂ changes in its magnitude across Tx~180K (Ca) and 200K (Sr). This is related to possible charge transfer between Cu and Ru ions, which might owe to electronic correlation of the Cu-3d and Ru-4d electrons.

			(金額単位:円)
	直接経費	間接経費	合 計
2008年度	1, 500, 000	450, 000	1, 950, 000
2009年度	900, 000	270, 000	1, 170, 000
2010年度	900, 000	270, 000	1, 170, 000
年度			
年度			
総計	3, 300, 000	990, 000	4, 290, 000

交付決定額

研究分野:数物系科学 科研費の分科・細目:物理学・物性 II キーワード:強相関系、Aサイト秩序ペロブスカイト酸化物、核磁気共鳴、電荷移動

1. 研究開始当初の背景

(1) ペロブスカイトのAサイトに複数の陽イ オンが入り、かつそれらが規則的に配列した ものを A サイト秩序型ペロブスカイト酸化 物とよび、以下では特に (A'_{1/4}Cu_{3/4})BO₃ = A'Cu₃B₄O₁₂なる組成をもつ化合物群をとりあ げる。これはAサイトに遷移金属元素 Cu が 入る珍しい例である。この系ではA'サイト・ Bサイトに入る原子に応じて物性が大きく変 化することがわかっていた。さらに CaCu₃Ti₄O₁₂(以下 CCTO)は異常に大きい誘電 率 ($\varepsilon \sim 10000$ 以上) を示したり、 CaCu₃Ru₄O₁₂(以下 CCRO)は金属であるが 4f 電子を含まない系としては珍しく低温で 重い電子的挙動を示すなど、興味深い物性を 示す化合物も多く含まれている。 (2) CCTO の巨大誘電率の原因については 様々な説明が試みられていたが、それが試料 に本質的なものかそれとも結晶内に生じた 歪み・点欠陥・双晶などの外的な要因による ものかなどの説明の基本的な枠組みすら確 立していなかった。その理由のひとつには、 当時、CCTO 単独を取り上げて議論されるこ とが多く、"A サイト秩序ペロブスカイト" の一員として他の同型化合物と比較しなが ら研究を進めていくという視点が比較的弱 かったことが挙げられるかもしれない。

(3) CCRO の重い電子的挙動の原因について 2004 年に小林らは、CCTO との比較を念頭に おいた上で興味深い提案をしている [W. Kobayashi, et al, J. Phys. Soc. Jpn., 73 (2004) 2373]。それはf電子を主体とした通常の重 い電子の発現機構と類似したもので、すなわ ち、CCROにおいてはCuの3d電子が高温で は局在電子を形成するが、低温では伝導電子 を形成する Ru-4d 電子と近藤効果によって混 成し、その結果として重い電子が形成されて いるのではないかというものである。これを 近藤格子仮説と呼ぶことにする。d 電子が局 在モーメントを形作ったあと、近藤効果によ り重い電子の形成を担いうるというアイデ ィア自体は10年ほど前から提唱されてい たが、実験的な例は数少なく、彼らの仮説が 本当であるなら強相関電子の物性への現れ として非常に興味深く注目されていた。

2. 研究の目的

(1) もともと核磁気共鳴(NMR)法は元素 毎・サイト毎の局所的な電子状態を明らかに できる有用な研究手法である。様々な物性を 示す A'Cu₃B₄O₁₂においてできるだけ多くの 既知化合物について NMR 測定を行うことで、 (Aサイトに入っている)Cuが持つ3d電子 の状態を実験的に調べることを目的にした。 Bサイトに入る元素についてもNMR 測定を 行い、Cu核 NMR 測定の結果とあわせるこ とで、微視的な立場からそれぞれの化合物の 示す物性の原因を詳細に探る。

(2) 特に CCRO について提唱された近藤格 子仮説について NMR 法を用いて検証する。 すなわち、Cu 核位置・Ru 核位置における電 子状態を微視的にそれぞれ見ることで、 Cu-3d 電子と Ru-4d 電子の振る舞いを独立 にとりだし、特に Cu-3d 電子が温度によって どのように変化しているかを追跡する。

(3) A'Cu₃B₄O₁₂ は結晶構造を保ったまま A',B サイトに様々な元素が入る。元素の一部 あるいは全部を置き換えた化合物を積極的 に合成し、マクロ物性を変化させた化合物に ついてその微視的状態の変化を NMR により 詳細に調べる。これによりペロブスカイトの Aサイトに入る Cu の 3d がどのような要因で どのように変化するかを系統的に探る。

3. 研究の方法

(1) CCRO, CCTO, あるいはその(A'サイト・B サイト)元素置換系は、代表者が中心となりその所属大学(高知大学)において固相反応法を用いて合成した。相評価は X 線回折測定で行った。

(2) NMR 測定は零磁場下での核四極子共鳴

(NQR)測定と磁場下での測定を並行して行った。前者は高知大学所有の自作スペクトロメーターを用い、後者は日本原子力研究開発 機構 先端基礎研究センターが所有する超 伝導マグネットを使用して行った。室温以下 の低温の測定は寒剤(液体窒素・液体ヘリウ ム)または VTI を用いて、室温以上の高温の 測定は自作の電気炉を用いて温度制御を行った。

4. 研究成果

CCROのNQR/NMR 測定の結果を述べる。NQR 測定によって決定された Cu 核のスピン格子緩和率^{Cu}(1/T₁)の温度変化を図 1(a)に、^{Cu}(1/T₁)の温度変化を図 1(b)に示す。

図1 Cu核の縦緩和率^{Cu}(1/T₁)の温度変化(a) および^{Cu}(1/T₁T)の温度変化(b)

二つの特性温度 T_x =180K, T_F =20K を境として 温度変化が異なっていることが分かる。低温 では $^{cu}(1/T_1)$ が温度に比例する、すなわち通常 金属でよく見られるようなコリンハ則が成 り立っている。このことから系の基底状態が フェルミ液体状態であることが確かめられ る。 T_F 以上ではコリンハ則からずれて増大す るが、 T_x 以上では測定温度上限まで再びコリ ンハ則に従うようになる。高温部における $^{cu}(1/T_1)$ の振る舞いはCuの3d電子が依然遍歴 的であり、局在モーメントをもっていないこ とを明確に示唆している。(もし局在モーメ ントを持っていれば、^{Cu}($1/T_1$)は温度に対し一 定の振る舞いを示し、またその絶対値も 10^4 sec⁻¹程度になると予想され、図1の結果とは 全く合致しない。)近藤格子仮説にいうよう な Cu の 3d 電子が高温で局在的性質をもち、 低温で近藤効果により遍歴的に変化する、と いったようなことは CCRO にはあてはまら ないことが本研究によりはっきりと示され た。

図2に、磁場中 NMR 測定により決定された Cu 核のナイトシフト ^{Cu}K を、温度を内変数として一様帯磁率 χ に対しプロット(いわゆる K- χ プロット)したものである。^{Cu}Kの χ に対する傾きは、Cu 原子核と電子との間の相互作用の強さを表す量(一般に超微細相互作用係数といわれる)に対応している。図2(b)にあるように、超微細相互作用係数は T_X 近辺で変化していることがみてとれる。微視的な電子状態が T_X で変化していることの証拠である。

図2 Cu核の $K-\chi$ プロット(a)とその拡大図(b)

詳細な計算は5の[雑誌論文]⑤にあげた論 文にゆずるが、図1にある^{Cu}($1/T_1$)の値と図2 の $K - \chi$ プロットから求められた超微細相互 係数の値を組み合わせて考えると、Cu-3d 電 子は全温度で電子相関による強い増強を受 けておらず、 $T_F \cdot T_X$ での電子状態の変化は、 Cu-3d 電子の有効状態密度 (DOS)の変化と 考えることができる。つまり、高温で一定で あった Cu-3d 電子の DOS が T_x で減少しはじめ T_F でふたたび一定に落ち着くと解釈される。一般の化合物を見渡してみても温度によって DOS が変化する例は数少なく、強相関系の研究の上で貴重な例であると考えている。

図3 Ru核の^{Ru}(1/T₁)の温度変化 (内装図はNQR周波数スペクトル)

Ru核NQRから決定された^{Ru}(1/T₁)の温度変 化を図3に示す。Ru-NQR の信号強度が非常 に弱いため、^{Ru}(1/T₁)は数十K程度の温度まで しか測定できなかったが、低温ではやはりコ リンハ則に従うことが見て取れる。再び詳細 は5の[雑誌論文]⑤にあげた論文にゆずるこ とになるが、 $Ru(1/T_1)$ の値と推定された Ru の 超微細相互作用係数などを組み合わせて考 えると、Ru-4d 電子は少なからず電子相関の 影響を受けており、通常の金属状態に比べて やや増強しているようである。CCRO が示す 重い電子的な挙動は Cu-3d 電子よりも Ru-4d 電子がむしろ担うと結論づけられる。本研究 の同時期に、京都大学の田中らはマクロな物 性測定より同様の推論に至っており[S. Tanaka, et al, J. Phys. Soc. Jpn., 78 (2009) 024706]、本研究の結果はそれを補強するもの である。

2009 年に Krimmel らは比熱測定により T_X でごく弱い転移が起こっていることを見い だし、 T_X では Cu,Ru の価数が変わっているの ではないかと提案している[A. Krimmel, et al., Phys. Rev. B 80 (2009) 121101(R)]。この文脈で 考えると、本研究で得られた Cu-3d 電子の DOS の変化は Ru-4d 電子との相関によって Cu のサブバンドから Ru のサブバンドに電子 が移ったこととして捉えられる。異種の電子 の相関が物性にあらわに影響を与える珍し い系であり、今後のさらなる定量的な研究が 望まれる。 (2) CCROのA'サイト(Ca)を、同じ価数を もつ Sr に置換した系 SrCu₃Ru₄O₁₂(SCRO)に対 する NOR 測定の結果を述べる。図4に ^{Cu}(1/T₁T)の温度変化を示す。高温ではコリン ハ則が見られる一方、Tx~200K 付近で CCRO の場合と同じく $C^{u}(1/T_1T)$ が減少している。(1) で述べたように、この^{Cu}(1/T₁T)の振る舞いは Cu-3d電子に関するDOSの減少と結びつけら れる。一方、重い電子が生成していると期待 される低温領域でみると、^{Cu}(1/T₁T)は~30K く らいから顕著な増大を見せる。低温域の ^{Cu}(1/T₁T)の振る舞いが CCRO/SCRO で全く 違うことは、低温で生成された重い電子の性 質・性格が両者で異なったものであることを 暗示する。CCRO, SCRO においては Cu,Ru の 価数が同じ(つまり Cu サブバンドの電子数 は同じ)ことを念頭に置くと、重い電子の形 成には電子数以外のパラメーターがより重 要なのかもしれない。例えば、CCRO/SCRO では結晶の単位胞距離の変化に伴い原子間 距離や超交換相互作用経路が異なることが 期待され、それに応じて Ru 電子との電子相 関が異なっているだろう。それらの要因が重 い電子の性格を変えているのかもしれない。 CCRO/SCRO を連続的に変化させたときにど うなるかは興味深い今後のテーマであろう。

図4 SCROにおける $Cu(1/T_1T)$ の温度変化

(3) CCRO の A'サイト (Ca) を、異なった 価数をもつ La に置換した LaCu₃Ru₄O₁₂ (LCRO)の結果を述べる。LCRO においては Cu,Ru の形式価数は CCRO のそれとは違って おり、整数価数にならない。

Cuは⁶³Cu,⁶⁵Cuという二つの同位体を持つ ので、これに対応して一つのCuサイトは二 つのNQR ラインを生ずる。図5にLCROの Cu核NQR周波数スペクトルを示す。Aサイ ト秩序ペロブスカイトの結晶構造において は結晶学的にはCuは1サイトしか存在しな

いのにもかかわらず、スペクトルからは局所 電気環境の異なる二つの Cu サイト[Cu(1), Cu(2)] が存在するとして説明される。(なお、 図5においてはCu(1)サイトの⁶³Cu-NQR ラ インと Cu(2)サイトの ⁶⁵Cu-NQR ラインがた またま重なっている。)これを説明する一つ の可能性は、作成した LCRO 試料において La サイトが一定量欠損しており、それにより 結晶学的に異なるサイトが生じたというも のであるが、試料評価の際に行った X 線回折 実験では La サイト欠損に積極的な証拠はえ られなかった。もしかしたら LCRO において はCuの3d電子が整数になっていないことか ら Cu に電荷秩序のようなものが起こり静的 に固定してしまっているかもしれない。もし そうであれば電荷秩序パターンは他の測定 手段で検出できるはずで、それは今後の課題 であろう。

図6にLCROにおける^{Cu}(1/*T*₁*T*)の温度変化 を示した。図中白丸はAライン(Cu(1)の⁶⁵Cu -NQR ライン)に対して測定したもので

Cu(1)の電子状態を、図中白三角は C ライン (Cu(2)の⁶³Cu-NQR ライン) に対して測定 したもので Cu(2)の電子状態をそれぞれ表し たものである。高温部ではともにコリンハ則 に従い、CCRO, SCRO にみられたような ^{Cu}(1/T₁T)の減少は観測されなかった。つまり、 LCRO においては Cu 電子の DOS は温度に対 し一定である。LCRO と CCRO (SCRO)の違 いは Cu サブバンドおよび Ru サブバンドに収 容される電子数の違いであり、それが DOS のあり方に大きく影響を与えることが示さ れる。CCRO/LCRO の中間化合物を作ること で価数を連続的に変化させ、それが DOS に どのような変化を与えるかは興味深い課題 であるし、今後の研究が待たれる。

(4) CCTO についても Cu-NQR 測定にトラ イした。(1)~(3)にあげられた Ru を含む規則 ペロブスカイト系において Cu-NQR 信号が観 測された周波数(18~20 MHz 近辺)を中心に 探索を行ったものの、残念ながら現在のとこ ろ信号の観測にはいたっていない。測定精度 の問題や、CCTO においては Cu がはっきり とした S=1/2 の局在モーメントをもつため緩 和が早くそれが観測を難しくしているなど の原因が考えられる。ありそうな別の可能性 は、CCTO においては Cu サイトの局所電気 環境が CCRO などのそれとは全く異なって おり、NQR 信号はまた違った位置に観測され るはずであるということである。いずれにせ よ Cu 信号が検出されればより多くのことが 分かるはずであり、当初目的であった A サイ ト秩序ペロブスカイト化合物の微視的電子 状態の探索という面からは今後のさらなる 展開が待たれる。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計26件)

① <u>H. Kato</u>, R. Kobayashi, T. Takesaka, T. Nishioka, M. Matsumura, K. Kaneko, and N. Metoki 、 Magnetic Structure Determination of CeT₂Al₁₀ (T = Ru and Os): Single Crystal Neutron Diffraction Studies、 J. Phys. Soc. Jpn.、 査読有、 80 巻、 2011、 印刷中

② <u>H. Kato</u>, T. Takesaka, R. Kobayashi, T. Nishioka, M. Matsumura, Y. Tokunaga, and S. Kambe、A NQR study of CeOs₂Al₁₀, J. Phys. Conf. Ser.、查読有、273 巻、2011、012037-1-4

③ M. Matsumura, Y. Kawamura, S. Edamoto, T. Takesaka, <u>H. Kato</u>, T. Nishioka, Y. Tokunaga, S. Kambe, and H. Yasuoka, Novel Phase Transition in

CeRu₂Al₁₀ Probed by ²⁷Al-NQR/NMR —No Evidence of Magnetic Ordering—、J. Phys. Soc. Jpn. 査読有、78巻、2009、123713⁻¹⁻⁴ ④T. Nishioka, et al, (<u>H. Kato</u>は計9名中の 5番目)、 Novel Phase Transition and the Pressure Effect in YbFe₂Al₁₀-type Ce*T*₂Al₁₀ (*T* = Fe, Ru, Os)、J. Phys. Soc. Jpn.、査読有、 78巻、2009、123705⁻¹⁻⁴

⑤ <u>H. Kato</u>, T. Tsuruta, M. Matsumura, T. Nishioka, H. Sakai, Y. Tokunaga, S. Kambe, and R. E. Walstedt、Temperature-induced change in the magnitude of the effective density of states: a NQR/NMR study of the A-site-ordered perovskite system CaCu₃Ru₄O₁₂, J. Phys. Soc. Jpn.、查読有、78 卷、2009、054707-1-8

〔学会発表〕(計93件)

① <u>H. Kato</u> 、 NMR/NQR studies on A-site-ordered perovskite systems, A'Cu₃Ru₄O₁₂ (A'=Ca,Sr,La) 、 International and interdisciplinary workshop on novel phenomena in integrated complex sciences: from non-living to living systems、 2010 年 10 月 12 日、京都コープイン (京都市)

②<u>H. Kato</u>、The ordered state of CeOs₂Al₁₀: NQR and neutron diffraction studies、 International Conference on Heavy Electrons(ICHE2010), 2010 首都大学東京南 大沢キャンパス、2010 年 9 月 18 日

③ <u>加藤治一</u>、規則ペロブスカイト系 ACu₃Ru₄O₁₂におけるNMR測定、日本物理学 会 2009 年秋季大会、2009 年 9 月 26 日、熊 本大学

④<u>加藤治一</u>、f電子を含まずに重い電子的挙動を示す化合物ACu₃Ru₄O₁₂におけるCu-,Ru-NMR測定、日本物理学会第63回年会、2009年3月10日、立教大学

6. 研究組織

(1)研究代表者

加藤 治一 (KATO HARUKAZU) 高知大学・教育研究部自然科学系・准教授 研究者番号:60363272

(2)研究分担者 なし

(3)連携研究者 なし

(4)研究協力者
松村 政博 (MATSUMURA MASAHIRO)
高知大学・教育研究部自然科学系・教授
西岡 孝 (NISHIOKA TAKASHI)
高知大学・教育研究部自然科学系・教授
神戸 振作 (KAMBE SHINSAKU)

日本原子力研究開発機構・研究員