科学研究費補助金研究成果報告書

平成22年 6月 9日現在

研究種目:若手研究	(B)			
研究期間:2008~200)9			
課題番号:20750164				
研究課題名(和文)	ナノシート高次元化プロセスを用いたリチウムイオン伝導性薄膜の 開発			
四曲:====================================	刑)元 Development of This film with Lithium los Orghosticity or ing			
研究 課題名(央义)	Development of Inin film with Lithium ion Conductivity Using			
	Nanosheets Process			
研究代表者				
鈴木 真也(SUZUKI SHINYA)				
東京大学・先端科学技術研究センター・助教				
· · · · · · · · · · · · · · · · · · ·				
则九泊亩方,70330	JJLI			

研究成果の概要(和文):層間または構造中にリチウムイオンを有する二次元ナノシ ート積層体を得た。その熱処理による三次元構造を有するリチウムイオン伝導体 は得られなかったものの、比較的大きなリチウムイオン伝導率を示すイオン伝導 体を開発した。

研究成果の概要(英文): Powder and thin film of restacked nanosheets containing lithium ion in the oxide layer or in the interlayer were obtained. Lithium ion conductor with a conductivity of 2×10^{-7} S/cm (@RT) was obtained by heating Zr(LiPO₄)₂·H₂O prepared with nanosheets process.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2008 年度	1, 300, 000	390, 000	1, 690, 000
2009 年度	1, 000, 000	300, 000	1, 300, 000
年度			
年度			
年度			
総計	2, 300, 000	690, 000	2, 990, 000

研究分野:化学

科研費の分科・細目:材料化学・無機工業化学 キーワード:ナノ粒子

1. 研究開始当初の背景

高いエネルギー密度を持つリチウムイオン 二次電池は、電気自動車用電源や産業用機器 用電源など大型用途電源としての応用が期 待されているが、大型化にはそれに伴う発火 等の危険性が飛躍的に増加するため、安全性 の向上が必須である。安全性の向上のために は、リチウムイオン伝導性固体電解質を用い た全固体化が有効である。全固体リチウムイ オン二次電池は、すでに実用化に向けた動き が発表されてはいるが、電極・電解質界面で 生じる大きな抵抗のため充分な電流を取り 出すことができておらず、実用化はなされて いない。この電極・電解質界面における抵抗 の低減にナノシートの柔軟性を利用した界 面形成が有効であると期待された。

2.研究の目的 ナノシートの積層、ナノシートの2次元構造 の3次元化によりリチウムイオン伝導性を 発現する薄膜を合成し、固体電解質としての 評価を行うことを目的とした。

3. 研究の方法

(1) 層状ペロブスカイト構造の一種である Ruddlesden-Popper 型構造を有する Li₂SrTa₂07の Sr サイトへの Li 固溶限界 を調査し、得られた固溶体化合物の層剥 離によって、酸化物層内に Li を有する ナノシートの合成を試みた。また、得ら れたナノシートの電気泳動法による膜 化を行った。

(2) Ruddlesden-Popper 型構造を有する Li₂SrTa₂0₇単結晶育成をフラックス法で 行った。得られた単結晶のイオン伝導率 の測定を行った。

(3) 層状リン酸ジルコニウム $Zr(HPO_4)_2$ ・ H_20 のナノシート化及びナノシート積 層体の合成を行った。また $Zr(HPO_4)_2$ ・ H_20 を出発物質として、熱処理によって 得られるリチウムイオン伝導体の探索 及びイオン伝導率の測定を行った。

4. 研究成果

(1) Ruddlesden-Popper 型構造の酸化物 層内である Sr サイトに Li を有する $Li_2(Sr_{0.1}La_{0.5}Li_{0.3} \Box_{0.1})Ta_2O_7$ 及び Li₂(La_{0.55}Li_{0.35}□_{0.1})Ta₂0₇を固相法によ って単相で得た。Li₂(Sr₀,La₀,Li₀,]□ _{0.1})Ta₂07のイオン交換・層剥離によって 得られたナノシートの原子間力顕微鏡 像を図1に示す。幅が100~400 nm、厚さ が 4~10 nm ほどの異方性の大きな二次元ナ ノ粒子であるナノシートが得られた。この厚 さはペロブスカイト層 5~12 層ほどに相当す る。組成分析の結果から、Sr サイトへの Li の固溶がなされていることと、収率が 5~6%程度であることを確認し、構造内 に Li を有するナノシートの合成に初め て成功した。

400 nm 図 1 酸化物層内に Li を有する 新奇ペロブスカイトナノシートの 原子間力顕微鏡像

(2) (1)において得られたナノシートを電気

泳動法による薄膜形成を試みた。薄膜が 得られることは確認したが、乾燥時や中 温度の熱処理時にクラックが生じるた め、導電率測定に耐えうる薄膜は得られ なかった。また図1で示したような比較 的二次元的な広がりが小さなナノシー トの積層で得られる積層体の断面透し て観察されるナノシートが乱れて積 にて観察されるナノシートが乱れて積 に 戦的小さなナノシートからなる積層 比較的小さなナノシートからなる積層 という 権置欠陥が多く生じ、元の層状現 されることが明らかになった。

積層体

基板

図 2 小さなナノシートの積層で得られる積層体の断面透過電子顕微鏡像

(3) (2)の結果を受けて、本研究の目的を達成するためには $1 \mu m \times 1 \mu m$ 程度のサイズのナノシートが必要であり、固相法から得た原料からでは困難な大きさであることから、フラックス法による単結晶の育成を試みた。LiBO₂をフラックスとして用いることで無色透明の板状結晶が得られ、Li₂SrTa₂O₇単結晶の育成に初めて成功した。単結晶の写真を図3に示す。

Li₂SrTa₂0₇単結晶の導電率を図4に示す。a-b面内方向、c軸方向の導電率は 300°Cでそれ ぞれ 6.2 × 10⁻⁵、2.6 × 10⁻⁷ S cm⁻¹であった。a-b面内方向の方がc軸方向と比較して はるかに高い導電率を示したことから、Li₂SrTa₂0₇においてa-b面内方向のLi イオン

伝導が支配的であることが示された。この a-b 面内方向への伝導は、Li 層内の Li サイ トを経る Li イオン伝導によるものである。

図4 Li₂SrTa₂07単結晶の導電率

(4) $Zr(HP0_4)_2 \cdot H_20$ の熱処理で得られる ZrP_20_7 の空隙内に Li を固溶させて得た 材料イオン伝導性を評価した。Li の固溶 量と格子長にイオン伝導性が依存した ことから導電率は主にリチウムイオン の伝導によるものであることが明らか になった。最も高い導電率を示した Li_{0.7}Y_{0.1}Zr_{0.75}P₂0₇の組成を有する材料の インピーダンスを図 5 に示す。300℃で 10⁻³ S/cm を超えるリチウムイオン伝導 性を示した。

(5) $Zr(HP0_4)_2 \cdot H_20$ のイオン交換によっ て得られる $Zr(LiP0_4)_2 \cdot H_20$ を 600℃で熱 処理することで得られる LiZr₂(P0₄)₃ と Li₃P0₄ との混合物の導電率を図 5 に示す。 この混合物は 200℃で 2×10⁻⁴ S/cm、室 温で 2×10⁻⁷ S/cm の高いイオン伝導性を 示した。これは LiZr₂(P0₄)₃ 単体よりも 遙かに高い導電率である。 高導電率を 示す理由は、LiZr₂(P0₄)₃の高温相が室温 付近まで安定化されているためである ことを明らかにした。この LZP/LP 混合体 の膜厚が十分に薄ければ、全固体電池への利 用が可能になると考えられる。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計1件)

 K.Ide, <u>S.Suzuki</u>, M. Miyayama, S ynthesis and lithium ion conduc tivities of zirconium phosphatebased solid electrolytes, Key E ngineering Materials, 査読有, 44 5, 2010, 105-108

〔学会発表〕(計3件)

- 末弘祐基,福島孝明,<u>鈴木真也</u>,宮山勝,Aサイトにリチウムイオン を導入した新規層状ペロブスカイト ナノシートの合成,日本セラミック ス協会 2009 年年会,2009 年3月
- ② 井手一人,鈴木真也,宮山 勝,ナ ノシートプロセスを利用したリチウ ムイオン伝導性リン酸ジルコニウム 系固体電解質膜の作製,第 29 回エ レクトロセラミックス研究討論会, 2009 年 10 月
- ③ 井手一人,<u>鈴木真也</u>,宮山 勝,ナ ノシートを用いたリチウムイオン伝 導性リン酸ジルコニウム系固体電解 質膜の作製,第 48 回セラミックス 基礎科学討論会,2010年1月

〔図書〕(計0件)

〔産業財産権〕 ○出願状況(計0件)

名称: 発明者: 権利者: 種類:

番号: 出願年月日: 国内外の別: ○取得状況(計0件) 名称: 発明者: 権利者: 種類: 番号: 取得年月日: 国内外の別: [その他] ホームページ等 該当無し 6. 研究組織 (1)研究代表者 鈴木 真也 (SUZUKI SHINYA) 東京大学・先端科学技術研究センター・助 教 研究者番号:70396927 (2)研究分担者 なし (3)連携研究者 なし