科学研究費補助金研究成果報告書

平成 24 年 1月 27 日現在

機関番号: 17701

研究種目:若手研究(B)研究期間:2008~ 2010課題番号:20780004

研究課題名(和文)ゲノム情報とバイオリソースを利用したイネ生殖隔離遺伝子の同定とその

起源と分布

研究課題名(英文) Identification of genes conferring reproductive barriers in rice with the aid of genome information and bioresources, and their origin and distribution

研究代表者:一谷 勝之 (ICHITANI KATSUYUKI) 鹿児島大学・農学部・准教授

研究者番号:10305162

研究成果の概要(和文): イネにおける雑種クロロシス遺伝子 HCA1, HCA2の染色体上の座乗位置を決定した. これらは、それぞれ第 11 および 12 染色体の短腕末端に座乗した. この領域は互いに重複する領域であることから、HCA1, HCA2遺伝子が共に機能を喪失したときに雑種クロロシスが発現すると考えられた. また、イネ品種 IR36 とジャマイカとの雑種 F_2 に見られる雑種弱勢現象のうち、ジャマイカがもつ劣性の原因遺伝子の座乗位置を第 1 染色体長腕の約 30kb に絞り込んだ. 世界イネコアコレクション、日本在来イネコアコレクションにおける上記生殖隔離遺伝子の分布を調査し、これら遺伝子の起源を考察した.

研究成果の概要(英文): Linkage analysis of the genes causing hybrid chlorosis in F_2 generation in rice, HCA1 and HCA2, was performed. HCA1 and HCA2 were located on the distal regions of the short arms of chromosome 12 and 11, respectively. The regions are known to be highly conserved as a duplicated chromosomal segment. Therefore, HCA1 and HCA2 are thought to be homoeologous genes to each other, and the loss-of-function mutation of these genes are thought to be the cause of hybrid chlorosis. Weak plants segregated in the F_2 population from the cross between the two rice cultivars, IR36 and Jamaica. The causal recessive gene from Jamaica was located on the long arm of chromosome 1. The fine mapping of this gene narrowed down the area of interest to 30 kb. The distribution of these reproductive-barrier-genes among the world rice core collection and the Japanese rice landlace core collection was surveyed, and the origin of these genes was discussed.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2008 年度	1, 000, 000	300, 000	1, 300, 000
2009 年度	1, 100, 000	330, 000	1, 430, 000
2010 年度	1, 100, 000	330, 000	1, 430, 000
年度			
年度			
総計	3, 200, 000	960, 000	4, 160, 000

研究分野:農学

科研費の分科・細目:(分科)育種学,(細目)植物育種・遺伝

キーワード:クロロシス,雑種弱勢,生殖隔離

1. 研究開始当初の背景

遺伝的な生殖隔離には,交雑不和合,配偶子致死,雑種弱勢,雑種不稔,雑種崩壊などが知られており,イネ,コムギ,オオムギ,

ライムギ,レタス,ワタ,タバコなど,多くの植物種で報告されている.このような生殖 隔離は交雑育種の障害となるため,育種学の 研究課題の一つとして,長年に渡り,研究が 続けられてきた.一方で,種分化,品種分化 を引き起こす要因となるため,進化学者や分 類学者の興味を引いてきた.

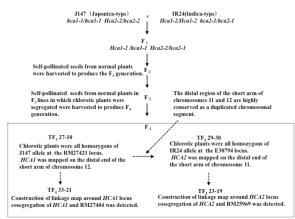
遺伝的生殖隔離現象を解明するには、究極的には関与遺伝子を単離し、その機能を明らかにする必要がある。また、遺伝子は同一染色体上の近傍の遺伝子と連鎖して次世代に伝達されるので、遺伝子の染色体上の座乗位置を明らかにして、近傍遺伝子の影響を考慮する必要がある。

申請者は, HWC1 座の Hwc1-1 遺伝子と HWC2 座の Hwc2-1 遺伝子の補足作用によ って生じるイネ雑種弱勢現象を解明するこ とを目的として, これら遺伝子の染色体上の 座乗位置を明らかにしてきた(Ichitani et al. 2001. Ichitani et al. 2007). Hwc1-1 遺伝子 はペルーの熱帯日本型品種 Jamaica のみが もつ遺伝子で第1染色体長腕に座乗する (Ichitani et al. 2007). Hwc2-1 遺伝子は日 本型、特に温帯日本型品種に多く分布する遺 伝子で, 熱帯日本型やインド型にはあまり分 布しない. HWC2遺伝子は第4染色体長腕に 座乗し、フェノール反応性を支配する Ph 座 と密接に連鎖する(Ichitani et al.2001).フェ ノール反応性は日本型品種とインド型品種 の分類基準の一つである. HWC2-Ph の染色 体領域は、インド型―日本型の分化、温帯日 本型-熱帯日本型の分化の2つの品種分化 と関わりのある領域であることが判明し、こ の領域を調べることで品種分化の手がかり が得られるという感触を得ている. その後, 本研究と並行して行った別課題の研究で, HWC2遺伝子を挟む 200 kbp の DNA マーカ ーのハプロタイプが Hwc2-1 対立遺伝子をも つ品種で共通であることを明らかにしてい る(Kuboyama et al. 2009). HWC2遺伝子以 外の生殖隔離遺伝子でも同様の傾向を示す かどうか調べることは、品種分化の視点から 大変に興味深い.

2. 研究の目的

これまでの研究で雑種崩壊,雑種不稔,交雑不和合では,これら現象を引き起こす交配組み合わせで,遺伝様式,染色体上の座乗位置が明らかにされている.しかし, F_2 世代に発現するイネで唯一の雑種クロロシス現象を支配する遺伝子座 HCA1, HCA2座の劣性遺伝子 hca1-1, hca2-1(Sato and Morishima 1988)は,遺伝子の存在は古くから知られているが,染色体上の座乗位置は明らかにされていない. hca1-1遺伝子は滋賀県の在来品種J147 のみが持つのに対して,hca2-1遺伝子は日本型品種に広く分布している.この雑種クロロシス現象はSato and Morishima (1988)以降,研究成果が報告されていないが,研究代表者(以下,代表者)はJ147 といくつか

の品種の F_2 世代を育成し,雑種クロロシス現象を確認している. また,代表者は,イネ品種 Jamaica と IR36 の F_2 世代における雑種弱勢 (致死) 現象を発見している.本研究の目的は, HCA1, HCA2 ならびに IR36 と Jamaica の交雑 F_2 に見られる弱勢現象を支配する遺伝子を同定するとともに,それらの遺伝子の分布を調べ,遺伝子の起源を探るとともに,このような現象を支配する分子機構を考察することである.


3. 研究の方法

(1)雑種クロロシス遺伝子 *HCA1*, *HCA2*の連鎖 分析

総合地球環境学研究所の佐藤教授から, hca1-1をもつ唯一の品種である J147 の分譲 を受け、維持している6品種との交配を行い、 5組合せで F。世代の生育初期にクロロシス 個体が約1/16の確率で出現することを確 認した. J147 は外観的特徴や維持品種との F,世代の種子稔性から日本型に近いと推定さ れた. そのため、F。世代の生育初期にクロロ シス個体が出現した交配組み合わせの中か ら, DNA マーカーの多型性の高いインド型品 種 IR24(九州大学農学部 教授 吉村淳博士か ら分譲を受ける)との組合せを選び、正常個 体を栽培して自殖種子を得た. そして, F₃系 統の中から, 生育初期にクロロシス個体が分 離する系統を6選び、正常個体を自殖させて F_4 系統を得た. これらの F_4 系統の中には HCA1が分離するもの、HCA2が分離するものの両方 が存在することが期待される. その中で, HCA1, HCA2のうちの一方が固定し、もう一方 が分離すると思われる系統を分析対象とし た. 次いで、その集団から個体ごとに DNA を 抽出し、DNA マーカーと当該遺伝子との連鎖 を調べることにより、当該遺伝子の染色体上 の座乗位置を決定した(図1). 連鎖分析の過 程で、クロロシス個体での HCA1 が座乗する 領域における染色体消失が観察されたので, 消失開始点を探るために、HCA1 周辺の DNA を 増幅するプライマーを設計して,正常個体と クロロシス個体に対して PCR を行った.

(2) F₂雑種弱勢遺伝子の連鎖分析

この弱勢現象はインド型品種 IR36 に熱帯日本型品種 Jamaica のもつ Hwc1-I遺伝子を連続戻し交雑によって導入する過程で見いだされた. BC_2F_2 世代で,極端な矮性で生育途中で致死する個体(以下,弱勢個体)が約 1/4の頻度で出現した. 予備的に連鎖分析を行ったところ, Jamaica の第 1 染色体長腕の 1 劣性遺伝子に支配されていることが判明した. IR36 と Jmaica の F_3 世代を展開し,第 1 染色体長腕が Jamaica 型に固定し,かつ,弱勢個体が約 1/4 の頻度で出現する系統を

選び,連鎖分析を行ったところ, IR36 の第2

図 1. HCA1, HCA2連鎖分析材料の育成経過.

染色体短腕に座乗する劣性遺伝子の存在が確認された.第1染色体の遺伝子については、当該遺伝子を挟む 2DNA マーカーを用いて、遺伝子周辺で組換えを起こした個体を選抜することで、遺伝子の座乗領域を絞り込んだ、本研究では、正常個体の生理的生育不良による弱勢個体との判別ミスを避けるために、明らかに正常に生育した個体のみを分析対象とした.組換えを起こした個体は、遺伝子型を明らかにするために後代検定を行った.

第2染色体の遺伝子については、同遺伝子が分離する集団における弱勢の表現型がやや不明瞭なこと、Matsubara et al. (2007)、Miura et al. (2008)が分析している遺伝子と同一である可能性が高くなったこと(後述)から、高密度連鎖解析は第1染色体に絞って行い、第2染色体の遺伝子については、より分析しやすい系統の育成をすすめることにした。

(3) 新 DNA マーカーの設計

座乗領域を絞り込むと、座乗領域に公表されている DNA マーカーが存在しなくなる. その場合には、ゲノム全体が解読された日本型品種「日本晴」、ショットガン法によるドラフトシークエンスが公開されたインド型品種「9311」、BAC エンドシークエンスが公開されたインド型品種「カサラス」の塩基配列、Ory-

zaSNP(http://oryzasnp.plantbiology.msu.edu/index.html, McNally et al 2009)などのゲノム情報によって新たなDNAマーカーを作成して、座乗領域の絞り込みをさらに進めた. その詳細はKuboyama et al. (2009)に記した.

(4)遺伝子の分布

農業資源生物研究所で構築された品種のセット,「世界イネコアコレクション」,「日本 在来イネコアコレクション」を供試した. こ

れらは, それぞれ, 少数の品種群で多様性を できるだけ多く含むように品種が選ばれた、 遺伝子の分布を調査する上で有用なバイオ リソースである,以下,両コアコレクション を指すときには、単に、コアコレクションと 表記する). hca2-1 遺伝子の分布を調査する ために, hca1-1遺伝子をもつ J-147 系統をコ アコレクションと交雑し、F。世代を展開し(1 組合せあたり 192 個体), クロロシス個体の 出現の有無を調査した.また, Jamaica と IR36 の F。世代における雑種弱勢現象を支配する 遺伝子の分布を調査するために、Jamaica、 IR36 をコアコレクションと交雑して F。世代 を展開し(1組合せあたり192個体),弱勢個 体の出現の有無を調査した. Ichitani et al. (2011)で雑種弱勢遺伝子 HWA1, HWA2 遺伝子 をもつ品種を分類する際に用いた全染色体 をカバーする 39 の DNA マーカーを用いて, コアコレクションを日本型とインド型に分 類した.

4. 研究成果

(1) 雑種クロロシス HCA1, HCA2 の連鎖分析 hca2-1遺伝子をもつ品種 IR24 と hca1-1遺伝 子をもつ滋賀県の在来品種 J147 との交雑 Fa 世代を育成し、 DNA マーカーを用いて両遺伝 子の連鎖分析を行った. F₄系統 TF₄ 27-10 (図1)で第12染色体短腕のDNAマーカーとク ロロシスとの連鎖が認められた. クロロシス 個体はすべて J147 ホモ型であったため, HCA1 遺伝子が第 12 染色体短腕に座乗することが 明らかになった. 第11染色体短腕と第12染 色体短腕が重複している報告が多数あるこ と、HCA1と連鎖する DNA マーカーが重複領域 に存在することから, HCA2 遺伝子は第 11 染 色体短腕に座乗していると推定した. そこで, F₄系統の中から第12染色体のDNAマーカーが J147型で固定し、クロロシス個体が分離する 系統(TF₄29-30)を供試し分析したところ,第 11 染色体短腕の DNA マーカーとクロロシスと の連鎖が認められ, クロロシス個体はすべて IR24 ホモ型であったため, HCA2 遺伝子は第 11 染色体短腕に座乗することが明らかにな った. 最終的には、図1に示したように、HCA1は DNA マーカーRM27404 と共分離し、 HCA2 は RM25969 と共分離した(図1).

(2) 雑種クロロシスにおける第 12 染色体短腕末端消失: HCA1 遺伝子の高密度連鎖解析を行うべく第 12 染色体短腕末端の DNA マーカーを設計し、PCR を行ったところ、IR24 由来のhca2-1 遺伝子をホモ接合でもち、hca1-1 遺伝子が分離する集団では J-147 型の PCR 産物が得られなかった。また、J-147 由来のhca1-1 遺伝子をホモでもち、第 11 染色体短腕末端に座乗するhca2-1 遺伝子が分離する集団を

供試して第 12 染色体短腕末端の DNA マーカ ーを調査したところ, クロロシス個体 (hca2-1遺伝子をホモ接合でもつ)ではPCR産 物が得られなかった. 両分離集団の結果を合 わせると、hca2-1 遺伝子をホモ接合でもつと、 hca1-1 遺伝子が座乗する第 12 染色体短腕末 端の DNA が消失すると考えられた. 消失する 箇所を特定するために,第 12 染色体短腕末 端の配列を特異的に増幅するプライマーを 設計して PCR を行った所, 日本晴の PseudomoleculeIGGSP Build5 chromosome 12 の 12.5kb 付近の遺伝子 LOC_0s12g01200 と LOC_Os12g01210 の遺伝子間領域から LOC_Os12g01210 の内部の間約 2.5kbp の範囲 で DNA の消失が始まっていると考えられた. LOC 0s12g01210 は Arabidopsisの HCF152 と 同じ機能をもつと考えられている. HCF152 遺 伝子は、葉緑体 DNA にコードされる *psbB-psbT-psbH-petB-petB* 遺伝子のポリシ ストロニックな転写産物のプロセッシング に関与している(Meierhoff et al. 2003, Nakamura et al. 2003). この遺伝子は、イ ネの雑種クロロシスのような葉色異常の人 為突然変異体の原因遺伝子として同定され ている(Meurer et al. 1996). 今回の研究期 間では、雑種クロロシス個体で LOC 0s12g01210遺伝子のDNA消失が起こって いるかどうか、明らかにすることはできなか ったが、この遺伝子およびそれより短腕末端 に位置する遺伝子が HCA1 遺伝子の候補遺伝 子として有力であると考えられた.

(3)第1染色体に座乗する F₂雑種弱勢遺伝子 の高密度連鎖解析

染色体1に座乗する弱勢遺伝子の高密度連鎖解析を行った結果,遺伝子の座乗候補領域は約30kbに絞り込まれ,機能が明らかなタンパク質をコードする候補遺伝子が4つ座乗していた。もう一方の染色体2に座乗するIR36由来の遺伝子については、Matsubara et al. (2007)が報告したコシヒカリと Nona Bokra の間で見出された弱勢個体を支配する遺伝子と密接に連鎖する DNA マーカーK/Nindel-1 との密接な連鎖が認められたため、同一の遺伝子である可能性が考えられた.

表 1. コアコレクションにおける hca2-1 遺伝子の分布

		CAPS416745の電気泳動パターン					
					決定でき		
					てい		
		A	В	C	ない	計	
<i>hca2-1</i> 遺伝子を もつ品種	日本型	14	21	0	1	36	
	インド型	5	2	0	7	14	
<i>hca2-1遺伝子を</i> もたない品種	日本型	7	1	1	1	10	
	インド型	3	0	21	3	27	

(4) hca2-1 遺伝子の分布

J-147との交雑 F_2 集団を供試しhca2-1遺伝子の分布を調査できたコアコレクションは87品種である(表 1).

0rv-

zaSNP (http://oryzasnp. plantbiology. msu. edu/index. html, McNally et al 2009) の情報に基づき, PseudomoleculeIGGSP Build5 chromosome 11 の 25.5 kb 付近の SNP TBGU416745を CAPS マーカー(CAPS416745を命名)に変換し, HCA2遺伝子と CAPS416745の電気泳動パターンとの関係を調査した. なお,これよりも短腕末端側では,第11染色体の塩基配列はほとんど第12染色体と重複しており,第11染色体特異的な DNA マーカーを作成するのが困難であった.

Sato and Morishima (1988)は、hca2-1 遺 伝子が日本型品種に多く分布していること を報告しているが、本研究の結果もそれを支 持した.また,電気泳動パターンのCはhca2-1 対立遺伝子をもたない品種にしか分布しな いこと, パターン A, B の頻度は明らかに hca2-1 対立遺伝子をもつ品種で高いことか ら, HCA2遺伝子周辺で連鎖不平衡が生じてい ることが示唆された.また,電気泳動パター ンCは明らかにインド型に偏って分布してお り, HCA2遺伝子を含む染色体領域と品種分化 との関連が示唆された. 一方, hca2-1 対立遺 伝子をもつ品種群で、日本型品種とインド型 品種で CAPS416745 の電気泳動パターンの分 布が異なっており、hca2-1 の起源が単一か, 複数であるかは明らかにできなかった.

日本晴の第11染色体と第12染色体短腕末端の重複領域でinsertion/deletion(INDEL)が生じており、それを挟む塩基配列は染色体間で共通の箇所が複数見出された。そこにプライマーを設計して第11,12両方の染色体の塩基配列をPCRで増幅し、電気泳動すると、日本晴で予想されるように上下2本のバンドを示す品種が多数であったが、上だけ、下だけのバンドを示す品種もあった(図2)。この結果は、①一方の染色体がもう一方の染色体

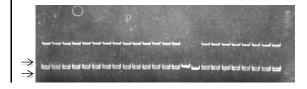


図 2. 日本晴ゲノムで第 11, 12 染色体間の INDEL を挟むように設計したプライマーで PCR した結果 得られた増幅産物の電気泳動写真. 左から 11 番目のレーンが日本晴. 一番右は 100bp 単位のラダーマーカー(100から 1000bp). 上の矢印は, 日本晴で第 11 染色体由来の増幅産物を指し, 下の矢印は第 12 染色体由来の増幅産物を指す.

に合わせるように INDEL が起こった,②INDEL 周辺でプライマーが結合できないような突然変異が起こった,の2通りの解釈が可能であり,現段階では特定することができない.遺伝子が高度に重複することで起こりうる変異を分析する上で,この染色体領域は有用なモデルになることが期待される.

(5) Jamaica との交雑 F_2 で弱勢遺伝子を生じさせる遺伝子の分布.

Jamaica と 71 のコアコレクション品種(日 本型 26 品種, インド型 45 品種)の交雑 F, に おける弱勢個体の出現の有無を調査したが, どの交配組み合わせでも弱勢個体は生じな かった.このことから, IR36 がもつ第2染色 体に座乗する雑種弱勢遺伝子は IR36 を含む ごく一部の品種に分布すると考えられた. Matsubara et al. (2007) はインドのインド型 品種 Nona Bokra が第 2 染色体の DNA マーカ -K/Nindel-1 と密接に連鎖する弱勢遺伝子 をもつと報告している. Miura et al. (2008) は、イネ品種コシヒカリと野生イネ Oryza nivara との交雑後代で弱勢個体が出現する のを見出し、原因遺伝子が Matsubara et al. (2007) が見出した第2染色体の遺伝子と ほぼ同じ位置に座乗することを見出してい る. IR36 は国際イネ研究所(IRRI)で育成され た品種であり、その育成系譜には6ヶ国の18 在来種(landrace)が関与している(Khush and Virk 2005). その中には, grassy stunt に抵 抗性をもつ Oryza nivara が含まれる. 以上 の情報は第 2 染色体の弱勢遺伝子の起源は Oryza ni vara であることを示唆するが、上記

表 2. コアコレクションにおける IR36 との 交雑 F₂で弱勢個体を分離する品種の分布

	55	弱勢遺伝子周辺のDNAマーカー					
		KGC1M1	KGC1M3	KGC1M4	品種数		
IR36との	日本型	A	A	A	3		
交雑F2で		A	A	ND 1)	1		
弱勢個体が							
分離する	インド型	A	A	A	4		
品種				計	8		
IR36との	日本型	A	A	A	10		
交雑F2で	HAT	В	В	В	1		
弱勢個体が		その他(増幅産物が 2					
分離しない		一部で見られない)					
品種							
	インド型	A	A	A	2		
		A	В	A	10		
		A	В	В	5		
		В	A	A	1		
		В	В	В	8		
		その他(増幅産物が 3					
	一部で見られない)						
				計	42		

1) ND: not determined.

の分析方法で、野生イネにおける遺伝子の分布を調べるのは容易ではない、そのため、現在も育成中の第2染色体連鎖分析に適した材料を供試して、弱勢遺伝子特異的な塩基配列を複数見出した上で、ハプロタイプ分析を行い、IR36と同じハプロタイプを示した系統を分布調査に用いるのが望ましい。

(6) IR36 との交雑 F_2 で弱勢遺伝子を生じさせる遺伝子の分布.

IR36 と 50 のコアコレクション品種(日本型 17 品種, インド型 33 品種) をの交雑 F2 を供 試し、弱勢個体の出現の有無を調査した. 合 わせて,遺伝子周辺の INDEL マーカー KGC1M1, KGC1M3, KGC1M4のバンドパターンを調査した (表 2). A は日本型品種 日本晴と同じバンド パターン, Bは A とは異なるパターンを示す. 弱勢個体が分離する品種は、日本晴(系統番 号 WRC1) を含む日本型 4, インド型 4 であっ た. これらの品種は、近傍の DNA マーカーで 日本晴と同じハプロタイプ(A-A-A)を示した. これ以外のハプロタイプ(で弱勢を分離する 品種は見出されなかった.一方,日本晴と同 じハプロタイプで, 弱勢を分離しない品種が 日本型で10,インド型で2ある.日本晴と同 じハプロタイプは日本型に日本型品種に偏 って分布していることから, この弱勢遺伝子 は、日本型の分化後に出現した可能性が高い と思われる. Matsubara et al. (2007), Miura et al. (2008)は,第2染色体に座乗する遺 伝子とともに働いて弱勢を起こす遺伝子に ついて言及していないが、交配組み合わせか ら日本型品種コシヒカリがその遺伝子をも つことは明らかである. IR36 とコシヒカリの 交雑 F。集団は供試していないため、遺伝子の 異同は明らかではないが、彼らの実験結果も, 上記の可能性を支持していると思われる.

謝辞:本研究の実施に際しては、農林生物資源研究所ジーンバンクに世界イネコアコレクション、日本在来イネコアコレクション種子を、総合地球環境学研究所教授佐藤洋一郎博士にJ-147種子を、九州大学農学部教授吉村淳博士にIR24種子を、それぞれ分譲していただきました。また、九州大学農学部教授吉村淳博士、植物ゲノムセンター門奈理佐博士にはDNAマーカーの設計に際し、ご助言、ご支援いただきました。ここに謝意を示します。

引用文献

Ichitani K Y Fukuta, S Taura, M Sato 2001. Plant Breeding 120: 523-525.

Ichitani K. K Namigoshi, M Sato, S Taura, M Aoki, M Matsumoto, T Saitou, W Marubashi, T Kuboyama 2007. Theor Appl Genet:114: 1407-1415

- Ichitani K, S Taura, T Tezuka, Y Okiyama, T Kuboyama 2011. Rice 4: 29-38.
- Khush G S, P S Virk 2005. IR varieties and their impact. International Rice Research Institute, Metro Manila, Philippines.
- Kuboyama, T., T. Saito, T. Matsumoto, J. Wu, H. Kanamori, S. Taura, M. Sato, W. Marubashi and K. Ichitani 2009. Rice 2: 93-103.
- McNally KL, KL Childs, R Bohnert, RM Davidson, K Zhao et al. 2009. Proc Natl Acad Sci USA 106: 12273-12278
- Matsubara K, S Ito, Y Nonoue, T Ando, M Yano. 2007. Rice Genet Newslett 23: 11-13.
- Meurer J, K Meierhoff, P Westhoff 1996. Planta 198: 385-396.
- Meierhoff K, S Felder, T Nakamura, N Bechtold, G Schuster 2003. Plant Cell 15: 1480-1495.
- Miura K, E Yamamoto, Y Morinaka, T Takashi, H Kitano, M Matsuoka, M Ashikari 2008. Breeding Science 58:99-105.
- Nakamura T, K Meierhoff, P Westhoff, G Schuster 2003. Eur J Biochem 270: 4070-4081
- Sato YI, H Morishima 1988. Theor Appl Genet 75: 723-727.
- 5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計1件)

①Ichitani K, Y Takemoto, K Iiyama, S Taura, M. Sato. Chromosomal location of *HCA1* and *HCA2*, hybrid chlorosis genes in rice. International Journal of Plant Genomics. 査読あり. Vol. 2012, 2012 (In press).

〔学会発表〕(計4件)

- ①白田祐希・田浦悟・佐藤宗治・<u>一谷勝之</u>. イネ雑種黄化原因遺伝子 *hca1*, *hca2* の連鎖分析. 日本熱帯農業学会第 104 回講演会. 2008年 10月 18日, 鹿児島大学.
- ②竹本祐真・飯山光太郎・白田祐希・田浦悟・佐藤宗治・<u>一谷勝之</u>. イネ雑種黄化原因遺伝子 hcaI, hca2の高密度連鎖解析. 日本育種学会第 117 回講演会, 2010年3月26日,京都大学.
- ③飯山光太郎・竹本祐真・田浦悟・佐藤宗治・ 一谷勝之. イネ品種 Jamaica と IR36 との交 雑後代に見られた雑種崩壊現象に関わる遺 伝子の連鎖分析. 日本育種学会第117回講演 会,2010年3月26日,京都大学.
- ④ 一谷勝之・竹本祐真・田浦悟・佐藤宗治,

hca1-1, hca2-1遺伝子によるイネ雑種黄化現象によって引き起こされる染色体断片の消失, 日本育種学会第121回講演会, 2012年3月29日発表予定, 宇都宮大学

- 6. 研究組織
- (1)研究代表者
- 一谷 勝之 (ICHITANI KATSUYUKI)

研究者番号:10305162