科学研究費助成事業

研究成果報告書

6月16日現在 今和 5 年

機関番号: 82626
研究種目: 基盤研究(B)(一般)
研究期間: 2020 ~ 2022
課題番号: 20H02073
研究課題名(和文)冷熱最大活用のための低温流れの燐光温度速度計測法開発と乱流熱流束の計測
研究課題名(央文)Development of temperature and velocity measurement method for low temperature flow and its application to the measurement of turbulent heat flux
研究代表者
染矢 聡(SOMEYA, SATOSHI)
国立研究開発法人産業技術総合研究所・エネルギー・環境領域・副研究部門長
研究考悉是:0.0.3.5.7.3.3.6
交付決定額(研究期間全体):(直接経費) 13,600,000円

研究成果の概要(和文):有機と無機の蛍光素材の低温における発光特性を評価して、0 から-190 の温度変化に対して、発光強度が二倍以上強くなる物質を、無機蛍光体6種類、金属錯体4種の10種見いだした。金属錯体分子については発光強度が平均で-5%/ 変化したものもあり、発光強度、寿命とも強い温度依存性を示した。これを用いて-60 ~-40 の温度の伝熱面をパルス通電加速した際の過渡的な温度変化を行った。金属錯体の場合 に温度測定精度 ± 1.29 、耐食性の強い無機蛍光体の場合は温度測定精度 ± 1.73 を得た。また、金属錯体を含 有する粒子を作成し、-30 の低温液体流れの温度速度同時計測にも成功した。

研究成果の学術的意義や社会的意義 サーモカメラなど他の手法では測定できない低温の温度場計測を実現した.将来の液体水素やLNGなど冷熱が増 えているが,その多くを捨てている.極低温の温度分布を利用する学術研究や,冷熱エネルギーを有効活用する ための技術開発には本計測技術が不可欠である.また,表面温度だけでなく,低温の流体の温度速度も測定可能 となった.本計測手法は,冷蔵冷凍ショーケースのヒートポンプなど低温の冷媒を使う機器の高効率化にも有用 である.

研究成果の概要(英文):We evaluated the luminescence properties of organic and inorganic fluorescent materials at low temperatures and found ten substances, six inorganic phosphors and four metal complexes, whose luminescence intensity was more than twice as strong for temperature changes from 0 $^{\circ}$ C to -190 $^{\circ}$ C. For some metal complex molecules, the luminescence intensity changed by -5% /°C on average, indicating a strong temperature dependence of both luminescence intensity and lifetime. Transient temperature measurements were performed using these materials when a heat-transfer surface at temperatures of -60 ° C ~ -40 ° C was pulse-currently heated. Temperature measurement accuracy of ± 1.29 ° C was obtained for metal complexes, and ± 1.73 ° C for inorganic phosphors. Particles containing metal complexes were prepared, and simultaneous temperature-velocity measurements of low-temperature liquid flow at -30 °C were also successfully performed.

研究分野: 流体計測

キーワード: 可視化 燐光 温度 低温

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

様 式 C-19、F-19-1、Z-19(共通)

1. 研究開始当初の背景

エネルギー機器の総合効率向上のため熱の有効利用が重要であり、従来からタービン、エンジン などの機器では遮熱等によりガス温度を高めて高効率高出力化を目指している.一方、冷熱発電 は効率改善が進まず消滅しつつある.産業用ガスなど冷熱活用用途と需要が限定的で、これまで 冷熱は主に海水に捨てられてきた.しかし、シェールガス革命と低炭素化の観点から世界的に LNG 貿易が増えており、更に液体水素の最大活用の観点から、近年、冷熱の高効率活用を可能 とするシステムのニーズが高まっている.ところが、マイナスの温度に適用可能な流体温度分布 計測技術が存在しないため、システム最適化は容易ではなく、従来から検討されているタービン 吸気冷却以外の冷熱活用はあまり技術進展がない.本研究では燐光を用いた低温温度分布計測 に挑戦するが、低温で温度に応答する燐光物質に関する情報すらほとんどないのが実情である. 2.研究の目的

本研究では低温流体の温度速度分布の可視化計測技術の開発を最終的な目標として,以下の4つの課題を達成することを目的とする.

- 発光スペクトルや発光寿命が液体窒素温度~0℃の低温で温度依存性をもつ金属錯体分子 や蛍光体粉末を複数発見する.
- (2) 見出した感温性燐光物質を用いて低温の物体表面温度分布の可視化を行い、実測の際の温 度感度を確認するとともに、時間応答性などを確認する.
- (3) 低温で温度に応答する燐光物質を含有する感温性粒子を作成する.
- (4) 低温用感温性粒子を用いて低温流体の流れの温度速度の実測を試みる.

これらにより、これまで実現できなかった低温表面の温度分布を可視化する技術を実現するとともに、低温流体の温度速度分布の計測を実現する新しい可視化技術を開発する.

3.研究の方法

目的(1),(2),(4)についてそれぞれ以下のとおりに行った.(3)は含有物質が変わる以外は従来の 手法であるためここでは割愛する.

(1)基底状態の燐光物質に適切な波長の励起光を照射すると、燐光物質は励起光のエネルギーを 吸収し基底状態から一重項状態あるいは三重項状態といった高いエネルギーレベルに遷移する. その状態から蛍光・燐光を放射することでエネルギーを失う輻射緩和と、分子の回転運動や振動 によってエネルギーを失う非輻射緩和を経て基底状態へと戻る.非輻射緩和プロセスの熱活性 が Arrhenius の法則に則って温度依存性を有するため、結果的に発光寿命τが温度に依存する. 本研究では温度感度の高い燐光物質の探索のため、図 1 のような装置を用いて温度と寿命、発 光強度、発光スペクトルとの関係を調査する.測定対象としては 34 種の無機蛍光体と 9 種の金 属錯体を対象とする. 図 1 に示すサンプルを冷却ステージにセットして液体窒素によって室温 から・190°C の範囲で・10~-20°C ごとに温度を変化させる.

Fig.1 Experimental setup(左), Fig.2 PtTFPP 試驗片(中央), Fig.3 ZnO:Zn 試驗片(右)

(2)金属錯体の PtTFPP、無機蛍光体の ZnO:Zn の 2 種類を用いる. 図 2,3 に PtTFPP と ZnO:Zn の試験片を示す。大きさはそれぞれ 40×40mm であり、両画像中央付近は 365nm の波長のペン ライトによって励起された様子である。極低温表面温度計測に用いた実験装置類を図 4 に示す。 中央のベークライト製の除湿容器内に銅の冷却ステージがあり、ステージは容器下部の液体窒 素タンク内のヒートシンクを通じて冷却される。銅ステージ上に TSP 試験片を設置し、さらに その上に置いた通電ヒーター(抵抗値 31Ω)を用いて試験片の片端を加熱することで温度勾配 を生じさせた。ステージ温度は 3 か所に設置した測温抵抗体で測定した。実験ではヒーターを 100~140V, 312~438W で加熱した。全ての画像は高速度カメラにより 60fps、露光時間 50ps で撮影した。空間解像度は 1024×632 pixel である。励起光源は連続発光 LED を用いた。 (4)流体の温度速度分布計測試験は以下の様に行う. 図 5 において、中央のベークライト製の流 路 (20×20×280 mm) にエタノール水溶液(濃度 50%)を循環させた。エタノール水溶液は恒 温水槽により冷却され、水槽へ直接戻る際のバイパスバルブと流路入り口の流量計により流量 を調節した。流路の出入り口の測温抵抗体により温度を計測した。エタノール水溶液中には感温 粒子を混入させ、ダブルパルスレーザー(532nm)により励起し、観測面(95×20mm)をカメ ラで撮影した。

Fig.4 低温表面温度計測の実験装置

Fig.5 温度速度同時計測の実験装置, Fig.6 LOS:Eu の寿命の温度依存性

4. 研究成果

(1)無機蛍光体は, 燐光物質によって応答が異なり, 多くの物質では有意な温度依存性が見られ なかったが, 温度が低いほど燐光寿命が長くなるものや, 低温で燐光寿命が短くなるものも見ら れた. 温度依存性を示した蛍光体ではいずれの場合も 0°C から-190°C の範囲で単調に変化した.

金属錯体は、低温ほど寿命が長い傾向が共通して見られた.一部の金属錯体は、ある温度まで は燐光寿命が温度依存性を示すものの、ある温度以下では感温性を示さなくなった.また、特定 の温度を下回ると急に大きく寿命が変化する金属錯体も見られた.ここでは例としてユーロピ ウム蛍光体に着目する.

図 6 に Cate $S^{(1)}$ の報告によるエネルギー準位別の La₂O₂S:Eu (略:LOS) の寿命と、本研究で 測定した LOS, LOS と類似の組成・構造を有する Y₂O₂S:Eu(略:YOS:Eu), Y₂O₂S:Tb,Eu (略: YOS:Tb,Eu), Gd₂O₂S:Eu の燐光寿命と温度の関係をまとめた.なお、本研究の測定はいずれも、 特定の波長のみに着目した寿命ではなく、全波長の燐光を同時に捉えた、バルクな寿命である. Cate $S^{(1)}$ の 434nm、514nm の結果は右側縦軸を、他の測定値は左側縦軸を参照している.

本研究で測定した LOS の燐光寿命は、Cate ら⁽¹⁾による結果の ${}^{5}D_{1}$ 線、発光波長 538nm の結 果と類似しており、最も発光強度が明るい 624nm (${}^{5}D_{0}$ 線)とも比較的類似している.これらのこ とから、本研究の測定結果は過去の報告を概ね再現できており、適切に計測評価を実施できてい ると考えられる. Cate ら⁽¹⁾の 434nm (${}^{5}D_{3}$ 線)、514nm (${}^{5}D_{2}$ 線)の結果は比較的大きな温度依存性 を示しているが、これらの波長の発光強度は他の波長に比べて著しく小さいため、全波長を捉え た本研究の測定結果には顕著な影響は見られなかった.本研究の測定結果も温度によって寿命 が変化しているが、0°C から-190°C の間で 230~250ps と変化が小さく、温度感度は平均-0.081%/°C と小さかった.なお、434nm または 514nm の発光は極めて小さくカメラで燐光を 捉える本研究の目的には適用が困難である.

LOS と類似の組成・構造を有する YOS:Eu, YOS:Tb,Eu, Gd₂O₂S:Eu について, いずれも燐光 寿命が温度によってわずかに変化した.本測定結果では YOS:Eu は低温ほどやや寿命が長く, YOS:Tb,Eu, Gd₂O₂S:Eu は低温ほど寿命が短くなったが,0°C から・190°C までの温度変化に対 して寿命の変化は数%~10%程,温度感度にしてそれぞれ・0.011,0.025,0.055%/°C であった. (2)以下に PtTFPP を用いて温度計測を行った結果を示す。校正結果を図 7 に示した.0℃での 輝度を基準とすると、温度が 19.9℃から・61.0℃まで変化した際、明るさは 40%~44%変化し、 温度感度は三カ所でそれぞれ・0.59, -0.59, -0.63%/℃であった.校正関数は 3 次式を用いている. 図 8 に示すとおり,誤差は平均すると1.62±0.90℃(平均±標準偏差)であった.この測定系を 用いて通電加熱の熱量と加熱時間を変化させて温度分布の撮影を試みた.図 9 は 120V で 9 秒 間加熱した際のサンプル表面温度の時間・空間変化を測定した例である。初めほぼ-40℃の表面 温度が加熱を停止する9秒までの間、上昇し続けていることがわかる.

Fig.9 印加電圧 120V,加熱時間 9s の条件での温度変化測定例(ヒーター位置 0mm)

(4)以下に PtTFPP の TSParticles を用いて低温流体温度計測を行った結果を示す。温度校正は -15℃から 10℃までの 10 点の温度で行った. 図 10 に示すように校正の結果,温度が 19.9℃か ら・61.0℃まで変化すると明るさが 47.60%,46.77%,46.30%変化し、温度感度は・1.91,・1.88,-1.86%/℃であった。また,図 11 に示すとおり誤差は平均すると0.500±0.377℃(平均±標準偏 差)であった。加熱円柱まわりの温度分布を測定した例を図 12 に示す.初期温度や達成できた レイノルズ数などにまだまだ改善の余地があるが,加熱円柱の後流で温度が高くなっているこ とがわかる.

参考文献

(1) Cates, M.R., Beshears, D.L., Allison, S.W. and Simmons, C.M., "Phosphor thermometry at cryogenic temperatures", Rev. Sci. Instrum., 68 (1997), pp. 2412-2417.

5.主な発表論文等

〔雑誌論文〕 計1件(うち査読付論文 1件/うち国際共著 0件/うちオープンアクセス 0件)

1. 著者名	4.巻
Satoshi Someya	32
2. 論文標題	5 . 発行年
Particle-based temperature measurement coupled with velocity measurement	2021年
3. 雑誌名	6.最初と最後の頁
Measurement Science and Technology	42001
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1088/1361-6501/abc0b0	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

【学会発表】 計1件(うち招待講演 0件/うち国際学会 1件) 1.発表者名

Satoshi Someya, Fumio Takemura, Tetsuo Munakata, Hiroshi Ito

2.発表標題

Fabrication of Two-color hollow micro capsules for a simultaneous measurement of temperature and velocity

3 . 学会等名

19th International Symposium on Flow Visualization (ISFV19)(国際学会)

4 . 発表年 2021年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

6 . 研究組織

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
--	---------------------------	-----------------------	----

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関
共同研究相手国	相手方研究機関