大区分 I

研究課題名 造血幹細胞体外増幅系を用いた幹細胞性・加齢・発癌機 構の解析

東京大学・医科学研究所・特任教授

純度は漸

減する。ま

ずは FACS

と移植実

験を駆使

して、増幅

された幹

細胞を純

化できる

表面マー

カーを同

ひろみつ なかうち

中内 啓光

研究課題番号

20H05695 研究者番号: 40175485

造血幹細胞、ex vivo 増幅、クローナル造血、CRISPRgRNA スクリーニング、マルチオミックス解析 キーワード:

【研究の背景・目的】

造血幹細胞は古くから良く研究されていて、多分 化能、自己複製、ニッチなど幹細胞生物学の旗艦モデ ルシステムとして多くの概念を生み出してきた。し かし幹細胞生物学の根幹の原理である分化と自己複 製の制御機構の詳細は依然として不明である。ごく 最近、我々は血液学の長年の夢であったマウス造血 幹細胞を in vitro で長期培養して幹細胞としての機能 を維持したまま4週間で900倍以上に増殖させる手 法を開発し報告した (Wilkinson et al. Nature 2019). こ の手法は世界的に注目され、多くの研究室ですでに 追試されている。本研究では我々が開発した造血幹 細胞の長期培養増殖法を用いて、これまで得られる 数が少なかったため難しかった造血幹細胞を対象と した遺伝子スクリーニングや長期培養後のゲノム変 異解析を試み、造血幹細胞の分化と自己複製機構な らびに加齢による血液腫瘍の発症機構の解明に迫る。 さらにヒト造血幹細胞の ex vivo の増殖を可能にする 培養法を確立し、血液学の Holy Grail を達成すること を目指す。

【研究の方法】

定する。

我々が開発したマウス造血幹細胞の ex vivo 増幅系 においてもでも、長期培養に伴い機能的な幹細胞の

体外増幅されたHSCの表面マーカー同定 幹細胞・前駆細胞分画ごとの マルチオミックス解析 網羅的遺伝子ノックアウト 低分子化合物スクリーニング ヒト造血幹細胞培養への適用

図1 研究のストラテジー

この結果をもとに、真の幹細胞分画を分離し、大量 のサンプルが必要なマルチオミックス解析を実施す る。同時に、CRISPR/Cas9 ゲノム編集ライブラリーで 網羅的に遺伝子ノックアウトを行い、幹細胞性の維 持に必要なシグナルを同定する。同定されたシグナ ルを中心に、低分子化合物等のスクリーニングも実 施する。そして得られた知見をヒト造血幹細胞の培 養系に適用することで、マウスとの共通点、あるいは 相違点から、造血幹細胞の自己複製の本態と、ヒト造 血幹細胞増幅に必要な条件の解明を目指す。

図2 CRISPR ゲノムライブラリーによる網羅的解析

【期待される成果と意義】

造血幹細胞は 50 年以上前から骨髄移植という形 で造血器悪性腫瘍や遺伝性血液疾患に対する確立し た治療法として臨床応用されているが、HLA がマッ チしたドナーを得ること、数を増やすことが困難と いう問題を抱えている。さらに、加齢に伴う血液腫 瘍の増加が遺伝子変異の蓄積と強く相関しているこ と、高齢者の骨髄中には前白血病状態と考えられて いるクローン性の増殖が高頻度で見られることなど が示されているものの、変異集積から発症に至るメ カニズムは不明である。申請者らが開発したマウス 造血幹細胞の培養増殖系が可能にした multi-omics 解析を行うことによりこれらの血液学の長年の課題 を一挙に解決することが期待できる。

【当該研究課題と関連の深い論文・著書】

- 1. Wilkinson AC, Igarashi KJ, Nakauchi H. (2020). Haematopoietic stem cell self-renewal in vivo and ex vivo. Nat Rev Genet. 21(9):541-554. "PMID": 32467607.
- 2. Wilkinson AC, Ishida R, Kikuchi M, Sudo K, Morita M, Crisostomo RV, Yamamoto R, Loh KM, Nakamura Y, Watanabe M, Nakauchi H*, Yamazaki S*. (2019). Longterm ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature. 571(7763):117-121. "PMID": 31142833.
- 3. Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY, Nakauchi Y, Pritchard JK, Nakauchi H. (2018). Large-Scale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell. 22(4):600-607 e604. "PMID": 29625072.

【研究期間と研究経費】

令和2年度-6年度 152,600 千円

【ホームページ等】

https://www.ims.u-tokyo.ac.jp/sct/ nakauchi@g.ecc.u-tokyo.ac.jp