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Our reseach is important from scientific point of view because it develops more general geometrical
concepts than the Riemannian ones showing that the real world is Finslerian.

From social point of view, brings together researchers from Asia and from USA and Europe in
international conferences.

The present research include The study the geometrical and topological
properties of Finsler metrics of constant positive flag curvature induced by Zoll metrics, and The
study the geometry and topology of Finsler manifolds by using the properties of distance function
and the cut locus. Some results are published already,others still in print.

We have determined the local and global behaviour of geodesics, the difference with the Riemannian
case and the structure of the cut locus on a Randers surface of revolution.We have performed
numerical simulation on computer using the programming language SAGE.

We have studied the cut locus of Randers type metrics on different surfaces of revolution, we have

determined the local and global behaviour of geodesics,the structure of the cut locus using a
Hamiltonian formalism. The geodesics behaviour and the structure of the cut locus can be explicitly
determined in a much more general case than the Zermelo®s navigation case with Killing wind.

Differential geometry

Riemannian manifolds Finsler manifolds surfaces of revolution Killing vector fields the
theory of geodesics cut locus Zoll metrics manifold of geodesics
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1. MERBEIOER

A Randers metric ' = a+ [ is a special Finsler metric obtained by the deformation
of a Riemannian metric o by a one-form [ whose Riemannian a-length is less than
one in order to assure that [ is positive defined.

An equivalent characterization is through the Zermelo’s navigation problem. Con-
sider a ship sailing on the open sea in calm waters. If a mild breeze comes up,
how should the ship be steered in order to reach a given destination in the shortest
time possible? We recall that a Finsler metric F' is characterized by its indicatrix
{(z,y) € TM : F(x,y) =1} (see [BCS] ). In particular, a Randers metric indicatrix
is obtained as the rigid translation of the unit sphere {y € T,M : h(x,y) = 1}
of a Riemannian metric (M, h) by a vector field W € X(M) whose length is less
than one. The pair (h, W) will be called the navigation data of the Randers metric
F = a+ . Conversely, the Randers metric F' = « +  will be called the solution of
Zermelo’s navigation problem (h, W). In the case of Killing field wind, the geodesics,
cut points, and conjugate points of the Randers metric F' = a4 f can be obtained
by the translation of the corresponding geodesics, cut points, and conjugate points
of the Riemannian metric h by the flow of W, respectively (see [HS1], [R]). More
generally, new Finsler metrics F' can be obtained by the rigid translation of the
indicatrix of a given Finsler metric Fy by a vector field W. In this case, the pair
(Fy, W) will be called the general navigation data of F.

2. HRDEM
The purpose of this research project is two folded.

(I) Study of the conjugate and cut locus of Randers metrics F' = « + ( defined
by the Zermelo’s navigation in more general cases than the one where the wind is
Killing vector field.

(IT) Study the geometry of a Finsler manifold of scalar curvature which are not of
constant flag curvature by extending the results obtained in the case of Zoll metrics.
We have started the research assuming that the Finsler metric is of Randers type,
and

3. MRDAE
We have used classical methods of Differential Geometry in order to perform this
research. The geometry of Randers spaces is characterized by many local and global
computations concerning geodesics, flag curvature, scalar curvature and many other
geometrical objects. We have used hand computation for the most of these quantities

and then we have double checked the computations using symbolic computation
software like the package SAGE written in Python and others.

4. HFZAKR The results presented here are mainly from the papers [HS1], [HS2],
[BHS].

(I) We will construct Randers metrics using the following basic construction.
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Vo, [[V[[n < 1 V. Fp(—=V) <1 W, Fi(=W) <1

(M, Fy = ao + Bo) (M,Fy = ay + /1) (M, Fy = as + 2
V: h-Killing V. Fy-Killing dfy =0

Navigation data:  (h, Vp) (h, Vo +V) (h,Vo +V + W)

where (M, h) is a Riemannian manifold, and Vy, V,W € X(M) are vector fields on
M.

Theorem 0.1 Let (M,h) be a Riemannian manifold and let Vo, VW € X (M) be
vector fields on M.

(1)(i.1) If || Volln < 1, then Fy = a+ By is a positive defined Randers metric, where
Fy is the solution of Zermelo’s navigation problem with data (h,V}).
(1.2) If Fo(=V) < 1, then Fy = aq + By is a positive defined Randers metric,
where FY is the solution of Zermelo’s navigation problem with data (Fy, V).
(1.3) If Fi(—=W) < 1, then Fy = ag + [y is a positive defined Randers met-
ric, where Fy is the solution of Zermelo’s navigation problem with data
(£, W).
(1ifii.1) The Randers metric Fy = ay + By is the solution of Zermelo’s navigation
problem with data (h, Vo + V).

(1.2) The Randers metric Fy = ag + Po is the solution of Zermelo’s navigation

problem with data (h, Vo +V +W).
(111) If the following conditions are satisfied
(CO) Vi is h-Killing
(C1) V is F-Killing
(C2) d(Vo +V + W)# = dlogh A (Vo + V + W), where (Vo +V + W)# =
Ly(Vo+ V+ W) is the Legendre transformation of Vo+V + W with respect
toh, and \:=1—||[Vo +V + W32, then

(i1i.1) The Fy-unit speed geodesics Py, and the Fy-unit speed geodesics Py are
given by

Pot) = ¢e(p(t),  Pi(t) = u(Po(t)) = e owu(p(t)),  (0.1)

where p(t) is an h-unit speed geodesic and ¢, and v, are the flows of Vj,
and V', respectively. The Fy-unit speed geodesic Ps(t) coincides as points
set with Py(t).

(11i.2) The conjugate points of ¢ = P2(0) along the Fy-geodesic Py coincide to the
conjugate points of ¢ = P1(0) along the Fy-geodesic Py, up to parametriza-
tion.

The point Pi(l) is conjugate to g = P1(0) along the Fi-geodesic Py :
[0,1] = M if and only if the point Py(l) is conjugate to ¢ = Py(0) along
the corresponding Fy-geodesic Po(t) = _(Pi1(t)), fort € [0,1].
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The point Po(l) is conjugate to ¢ = Py(0) along the Fy-geodesic Py :
[0,1] = M if and only if the point p(l) is conjugate to ¢ = p(0) along the
corresponding h-geodesic p(t) = ¢_(Py(t)), for t € [0,1], where ¢;, and
Wy are the flows of Vi, and V', respectively.

(11i.3) The Fy-cut locus of q coincide as points set with the Fycut locus of q, up
to parametrization.
The point py is an Fy-cut point of q, if and only if po = ¥_i(p1) is an
Fy-cut point of q, where | = dg,(q,p1). The point po is an Fy-cut point of
q, if and only if po = p_i1(Po) is an h-cut point of q, where | = dg,(q, Po)-

(IT) The geometry of Randers metric of constant flag curvature is well understood.
An important example of Finsler metric of constant curvature induced by a Zoll
metric is presented in [KSS]. Some of the results described below have not been
published yet.

In the case the flag curvature K do not depend on the transversal wedge V', the
Finsler metric F'is said to be of scalar flag curvature. Obviously, every 2-dimensional
Finsler manifold is of scalar flag curvature, hence this definition makes sense for
dimension > 3 only.

Moreover, if K is a constant, then the Finsler metric F' is called of constant flag
curvature.

Theorem 0.2 Let (M = S™, o = cansn) be the n-sphere with the canonical metric.

Let f: 5" — R be a smooth function such that

(1) |V fla # constant, |V f|o < 1, where V f is the gradient vector field of f,
(i1) otherwise, V f is not Killing vector field on M.

Then the Randers metric F' = a+df is of scalar flag curvature, but not of constant
flag curvature.

Example 0.3 Let us start with 53 regarded as the doubly warped product (0, %) X
S! x 8! with coordinates (¢, u,v) and the canonical Riemannian metric

o = dt* + sin® t(du)? + cos® t(dv)?. (0.2)
If we denote max := 472 + “4—2, then

B = LE: Ldf = L(udt + tdu) (0.3)

max max max

is a closed 1-form on S%, s.t. [b|2 < 1.

Theorem 0.4 Let us consider the Randers space (M = S3 F = a + [8) where a
and [ are given by (0.2) and (0.3), respectively. Then F is of scalar flag curvature,
but not constant flag curvature.



We have also computed using symbolic computation in SAGE the scalar curvature
of this metric and obtain a result that actually shows that this scalar is not constant.

Remark 0.5 In [BS] the authors have constructed right invariant Randers metric
of constant flag curvature on the Lie-group SU(2) = S3. If we try to construct a
right invariant Randers metric of scalar curvature, this is not possible. Indeed, let
us consider the Lie Group G = SU(2) with the Lie algebra su(2).

First, we compute d3(X,Y), where X,Y are right-invariant vector field on G:

df(X,Y) = X(B(Y)) - Y (8(X)) - B([X,Y])
=0-0-p5([X,Y]) = -B([X,Y]),
where we use that (3 is right invariant if and only if 5(X) = constant, for any right
invariant vector field X.
Next, we assume df = 0. This implies § = 0 because [su(2),su(2)] = su(2).

Therefore:

Theorem 0.6 Let G be a connected Lie group whose Lie algebra g satisfies [g, g] =
g. If B is a right invariant one-form satisfying dg = 0 everywhere, then = 0.
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