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A system that allows to intrinsically apply stress to any number of samples was developed and can be
used study membrane mechanics or mechanical properties of soft material on a large scale.
Furthermore, ring-shaped microtubule swarms could be utilized as motors for nanomachines.

An elastic substrate stretching device to be used with a tip-scan high-speed

atomic force microscope (HS-AFM) was develeloped and used to load microtubules fixed by sparsely
distributed kinesin. Due to the elastic substrate experiencing simultaneous tension and compression
caused by Poisson®s effect, buckling of microtubules could be recorded in a controlled manner.
Imaging was perfomed with a resolution of several nanometers, surpassing the resolution of
conventional fluorescence microscopy. Further, stretching of microtubules could also be observed,
which lead to the microtubules fracturing and depolymerizing.
Using a different approach, microtubules were self-assembled into rings by DNA-modification on

kinesin substrates. These rings turned out to have a complex 3D structure that was elucidated by
combined HS-AFM and TIRFM.
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Microtubules are protein polymer tubes that are part of the cytoskeleton. They act as
transport pathways for motor proteins such as kinesin and dynein. During their activity,
microtubules can experience stresses that will cause deformation by bending, compressing or
stretching. These deformations are influencing the interaction of motor proteins, basically
turning the microtubules into force sensors[1]. Investigating the effects of such stresses on
the nanometer scale is challenging, because a precisely controllable force must be applied
directly to the microtubules. Typically, this is overcome by introducing an elastic substrate
covered in kinesin, which enables the transduction of deformations from the substrate to the
individual microtubules. Such setups are usually used with optical microscopy methods,
limiting the resolution to hundreds of nanometers. Atomic force microscopy (AFM),
specifically high-speed AFM (HS-AFM) would allow for a much higher resolution in the order
of 1 nm. However, such large-scale deformations make it difficult to keep the position for
targeting one and the same sample over the time-span of the stress application.

The purpose was to investigate deformed microtubules on the nanometer scale using HS-
AFM and apply the deformation reliably and in a controlled manner. For this a device
enabling the stretching of elastic substrates needed to be developed. Further, a method to
intrinsically deform the microtubules was utilized and eliminated the need for elastic
substrates, allowing to use the established glass substrates.

For deforming the microtubules with an elastic substrate, a uniaxial, symmetric stretching
device was used (Fig. 1). This device enabled symmetric load application to the substrate,
limiting the large-scale translocations of the sample to a manageable level [2].
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In addition to the mechanical deformation through substrate stretching, microtubules were
also deformed by self-assembly into rings. In this case, the samples were fluorescently dyed



and investigated by combined HS-AFM and TIRFM on kinesin covered glass substrates. Such
investigations might take a long time — typically tens of minutes — photobleaching of the dyes
is an issue. Since TIRFM images can be recorded within 100 ms, but AFM images of these
complex, 3D structures take around 1s to 10s a synchronized imaging system was
established that incorporates a shutter that allows to illuminate the sample only for the
duration of 100 ms at the beginning of the HS-AFM image, while the rest of the image is
dark, allowing for extended investigations.

An elastic PDMS substrate was sparsely covered with Kkinesin, which was used to fix
microtubules, but leave enough degrees of freedom to allow buckling and deformation of the
microtubules (Fig. 2a). Microtubules were randomly oriented on the substrate, some
experiencing tension, some compression, but general a mixed load due to Poisson’s effect
(Fig. 2b). Buckling could be clearly observed (Fig. 2c) and by evaluating the buckling radius
of the microtubule a clear decrease from 2000 nm at 3.3% to around 800 nm at 10% stress
was observed. Note that a stress over 10% lead to breaking of the microtubule which can be
clearly observed with the HS-AFM’s superior resolution [2].
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Figure 2: Controlled buckling of microtubules under load. (a) Scheme of microtubule fixation and
principle of loading. (b) Large-scale observation of randomly oriented microtubules. (c) Individual
buckling microtubule. (d) Relationship of buckling radius with compressive strain. From [2].

DNA-modified microtubules tend to form swarms on Kinesin covered surfaces with ATP
present. These swarms can self-assemble into rings which will rotate steadily as long as ATP

is supplied. Using HS-AFM and TIRFM it was possible to specifically target rings (Fig. 3)
and analyze their structure.



Figure 3: HS-AFM image (left) of the microtubule swarm ring indicated with a blue square in the

TIRFM image (right).

This allowed the analysis of the structure of the rings and estimate the number of
microtubules contained within a ring (Fig 4). It turns out that there is a clear correlation
with the width of the ring and the number of microtubules contained. Furthermore, rings
tend to become 3D structures when they are wider (e.g., Fig. 3) while they are single layer
structures when less microtubules are contained (Fig. 4) [3].
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Figure 4: Principle of counting the number of microtubules within a ring. (a) Dimensions of individual
microtubules. (b) HS-AFM images of microtubule rings. (c) Line profiles of the rings (red) and

automatically fitted microtubules (blue) for counting. From [3].
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