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Innovative enhancement of titania-based fuel cell electrode performances
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Oxide catalysts have attracted increasing attentions as they are durable
against highly acidic environments and high potentials in polymer electrolyte fuel cell cathodes
while their oxygen reduction reaction activities remained lower than that of currently available
platinum-cobalt catalysts. In this study, we focused on abundant and highly conductive titania
catalysts and the activity and durability were enhanced by substituting several elements for
titanium and oxygen ions in titania.

Phosphorus doping level of phosphorus and nitrogen co-doped titania catalysts were controlled by the
starting material and both the initial activity and durability against startup/shutdown cycles were
enhanced bg increasing the surface phosphorus doping level. Further, the work function was

controlled by doping foreign metals to increase the selectivity toward four electron reaction and

thus to improve the startup/shutdown durability.
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Figure 1(a) Phosphorous-to-titanium atomic ratio, z calculated from X-ray photoelectron
spectra (circle symbols) and energy dispersive X-ray spectra (square symbols) versus the
nominal value, Rr curves for TiOxN,P; catalysts synthesized from two different phosphorous
sources, HzPO: (red) and HsPO4 (black). (b) Rotating disk electrode (RDE) voltammograms of
HsPO2-derived TiOxN,P; catalysts for three different Rp, 0.10, 0.20 and 0.35 and RDE
voltammogram of the best HsPOs-derived TiOxNyP: catalyst after optimizing the Rr at 0.35.
The scans were performed in N2 and Oz atmospheres at a rotation speed of 1500 revolutions
per minute (rpm) and a cathodic scan rate of =5 mV s~1 in 0.1 mol dm-3 H2SO4 solution.
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Figure 2 RDE voltammograms of a HsPO2-derived TiOxN,P; catalyst before (solid curves) and
after (dashed curves) 5,000 cycles with (a) rectangular waves between 0.6 V (3 s) and 1.0 V
(3 s) and (b) triangular waves between 1.0 V and 1.5 V at a scan rate of 0.5V s1in 0.1 mol
dm-3 H2SO4 solution.
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Figure 3 (a) Kinetic current density and number of electrons transferred per unit oxygen
molecules versus the work function (jk—® and n—® curves, respectively) obtained from
four TiosMo.2OxNy catalysts, where M= Zr, Nb, Ni and V. (b) Two reaction pathways for
the ORR on conventional catalysts.

HO," + H* + & — Hy0, + *

o I
H e .
Oy +*— 0y" 02‘+H++e_—>HOQ;<§\ ‘ '.‘
4.9
2@

(SN

Or beforeafter 5,000 cycles
— == TigaZio 0N, .

-3F -
At i
5p ST — - , L
0.2 0.4 0.6 0.8
Evs. RHE /V

Figure 4 RDE voltammograms of the Tio.sZro20xNy catalyst before (solid curve) and after
(dash-dotted curve) 5,000 potential cycles between 1.0 V and 1.5 V versus the RHE at 0.5V
s1in 0.1 mol dm-3 H2SO4 solution. For comparison, RDE voltammograms of the TiOxN,P:
catalyst before (dash-double-dotted curve) and after (dashed curve) 5000 cycles are shown.
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