科学研究費助成事業

研究成果報告書

今和 6 年 6 月 1 1 日現在 機関番号: 57103 研究種目: 基盤研究(C)(一般) 研究期間: 2020~2023 課題番号: 20K05142 研究課題名(和文)異種元素を添加したBi系複合酸化物顔料の低温合成と発色性能の向上 研究課題名(英文)Low temperature synthesis of Bi-based complex oxide pigment with elemental additions and improvement of chromic characteristics 研究代表者 松嶋 茂憲(Matsushima, Shigenori) 北九州工業高等専門学校・生産デザイン工学科・教授 研究者番号:80229476

交付決定額(研究期間全体):(直接経費) 3.300.000円

研究成果の概要(和文):本研究では、パイロクロア型構造のBi2M207(M=Ti,Zr,Ce)に着目し、視認性に優れ る黄色系顔料の開発を目指した。Bi2M207の中ではBi2Ce207(BCO)が最も良好な結果を示した。Vを添加すると BCOの発色性能が向上し、CaやLaを共添加すると吸光度がさらに増加した。L*a*b*表色系におけるb*値(黄色度 の指標)はBCOICとCaあるいはLaを共添加すると最も高い値となった。Bi2M207(M=Ti,Zr)の第一項エノンド計 算ではBi2Ti207にVを添加するとバンドギャップ中にV3dの不純物準位が形成され、さらにCaを共添加するとV-0 間の電荷移動型吸収が増強された。

研究成果の学術的意義や社会的意義 本研究の特色は、材料科学,無機材料工学,有機合成化学を融合して、環境調和型の新規な黄色系微粒子顔料を 創製することである。本研究の知見は、これらの分野の機能性材料開発で重要である他、光触媒,環境材料,エ ネルギー材料,建築材料等の分野の発展にも貢献できる。

研究成果の概要(英文):In this study, we aimed to develop yellow pigments with excellent visibility using Bi2M207 (M = Ti, Zr, Ce) with pyrochlore-type structure. Low-temperature synthesis of Bi2M207 (BMO) by a complex polymerization method yielded high-purity samples for Bi2Ce207 (BCO). The addition of V to BCO improved the coloring performance, and the addition of Ca or La as the second component increased the absorbance. The value of b^* , an index of yellowness, was evaluated using the L*a*b* color system. As a result, the b* value was highest when V and Ca or La were co-doped in BCO. First-principles band calculations for the structure-optimized Bi2Ti2O7 showed that the V 3d energy levels are formed in the band gap when V is added, and that the charge-transfer absorption between V and O is enhanced by the co-doping of Ca.

研究分野: 無機材料化学

キーワード: Bi系複合酸化物 算 固体電子構造 _、パイロクロア型構造 環境調和型セラミックス 黄色系無機顔料 第一原理バンド計

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1. 研究開始当初の背景

セラミック顔料には、六価クロム (Cr),カドミニウム (Cd), アンチモン (Sb),鉛 (Pb)等の有害な金属元素が鮮やかな発 色を達成するため使用されてきた。近年、これらの金属元素の 人体や自然環境に対する悪影響が懸念されており、国際的に厳 格な使用規制が求められている [1]。セラミック顔料の中で も、視認性に優れる黄色系顔料には非常に大きな需要がある。 最も代表的な低環境負荷型の黄色顔料として、プラセオジウム

(Pr) をドープしたジルコン (ZrSiO₄) 「プラセオジウムイエ

ロー」が知られている [2]。プラセオジウムイエローにおける

図 1 パイロクロア(A2B2O7)型構造

課題は、① ZrSiO4 粒子を得るには、空気中,高温(1600℃)での長時間焼成が不可欠であ り、エネルギー消費が大きいこと、② 高温焼成により粒子が粗大化するため、発色が退化 すること、③ 発色源である Pr が希少元素であることである。そのため、省エネルギーに よる合成が可能で、資源量が豊富で環境に優しい元素を用いた黄色系セラミック顔料の開 発が強く求められている。多様な異種元素を取り込むことが可能なパイロクロア(A₂B₂O₇) 型構造(図 1)を持つBi系複合酸化物は、その有望な材料である [3]。

2. 研究の目的

本申請では、鮮やかな黄色を呈する環境調和型セラミック顔料の微粒子を創製するため、 パイロクロア型構造の Bi 系複合酸化物に注目し、①有機酸多核錯体法による Bi 系複合酸 化物微粒子の低温合成,②異種元素添加による Bi 系複合酸化物粒子の形状特性の制御と発 色性能の向上,③第一原理計算による実験結果の理論的検証に取り組むことを目的とする。

3. 研究の方法

パイロクロア型構造の Bi 系複合酸化物として、Bi₂M₂O₇ (M = Ti, Zr, Ce) に着目した。 Bi₂M₂O₇ 粉体は、錯体重合法から得られた有機金属多核錯体を空気中,低温で焼成すること で得た。Bi₂M₂O₇ 粉体の結晶構造は粉末 X 線回折 (XRD) 法により調べ、可視光吸収(発 色) 特性は紫外・可視分光装置で測定した。発色性は、分光測色計を用いて L*a*b* 表色系 における色度座標により評価した。実験結果を検証するために、第一原理分子動力学計算法 および第一原理エネルギーバンド計算法による電子構造解析を実施した。交換相関相互作 用は、一般化密度勾配法(GGA 法)の枠内で実施した[4,5]。

4. 研究成果

4.1 Bi₂O₃-TiO₂ 系

Bi₂Ti₂O₇の調製は、錯体重合法により行ったが、 Bi₂Ti₂O₇よりも熱力学的に安定な Bi₃Ti₄O₁₂ が優先 的に生成することがわかった。理論的検討では、第 一原理分子動力学法により構造最適化した Bi₂Ti₂O₇ を用いて第一原理エネルギーバンド計算を実施し た。構造最適化は CASTEP プログラムで実行し [6]、 第一原理バンド計算は WIEN2k プログラムで行った [7]。計算で使用した Bi₂Ti₂O₇ 単位胞と V-doped Bi2Ti2O7 スーパーセルをそれぞれ図2と図3に示し ている。また、**図4**には Bi₂Ti₂O₇の全状態密度を示 している。この図から、Bi₂Ti₂O7 のバンドギャップ は 2.68 eV と見積もられ、実験値と類似することを 確認した [8]。価電子帯の主成分は O2p 状態である が、Bi 6p 状態や Ti 3d 状態と混成していることが わかった。価電子帯頂上(VBM)には、Bi6s 状態に 起因するエネルギー準位の局在化(不活性電子対効 果)が認められた。一方、伝導帯は、Ti3d 状態が主 成分で O2p 状態と混成しており、Bi6p 状態の寄与 も確認された。

図2 Bi₂Ti₂O7 の結晶構造

図3 V-doped Bi₂Ti₂O₇のスーパーセル

図 5 には、V-doped Bi₂Ti₂O₇の全状態密度を示している。Ti サイトを V で置換すると、 Bi₂Ti₂O₇のバンドギャップ中に V 3d 状態に起因する不純物準位が出現した。この準位は、 V-O 間の電荷移動型吸収に寄与すると考えられる。よって、Bi₂Ti₂O₇の発色度は V ドープ で向上することが期待される。そこで、V-doped Bi₂Ti₂O₇ に関して Bi サイトを R で置換 することを考え、(R, V)-doped Bi₂Ti₂O₇ について、構造最適化計算と第一原理バンド計算を 実施した。その結果、R の中でも Ca を V と共添加すると、価電子帯頂上近傍の O 2p の 状態密度が V 単独添加の場合よりも大きくなることがわかった。この結果は、V-O 間の電 荷移動型吸収が Ca 添加によって増強され、Bi₂Ti₂O₇の発色が一層鮮明になると期待され る。しかしながら、Bi₂Ti₂O₇ に V を添加すると、V を含む他の酸化物相が優先的に生成し、 Bi₂Ti₂O₇ に起因する回折ピーク強度が減少することが XRD 測定から明らかとなった。こ のため、V を添加しても、Bi₂Ti₂O₇ が安定に存在できる他の異種元素の添加が不可欠と考え られた。

図5 V-doped Bi₂Ti₂O₇の全状態密度

 $Bi_4Ti_3O_{12}$ が熱力学的に安定であるという実験結果が得られたので、この材料に注目して無機顔料として応用可能かどうか検討するために第一原理計算を実施した。図 6 には、 $Bi_4Ti_3O_{12}$ の結晶構造を示している。まず、擬ポテンシャル法に基づく CASTEP プログラムで格子定数と原子座標を最適化した。固体電子構造は、バンド計算法の中で最も高精度な FLAPW + lo法を実装した WIEN2k プログラムで解析した。これらの計算では、交換相関相互作用は一般化密度勾配法(GGA)の枠内とした。

図7には、 $Bi_4Ti_3O_{12}$ のエネルギーバンド構造を示す。こ の図より、VBM は第一ブリルアンゾーンの $Y-\Gamma$ 線上にあ り、伝導帯底部(CBM)は Γ 点であった。このことは $Bi_4Ti_3O_{12}$ の光学遷移が間接型であることを意味する。また $Bi_4Ti_3O_{12}$ の最小バンドギャップは 2.50 eV と見積もられ、 黄色の無機顔料として有望と考えられる [9]。

Bi₄Ti₃O₁₂ 中には、2 種類の Bi 原子(Bil と Bi2) と2 種 類の Ti 原子(Til と Ti2)が存在する。第一原理分子動力学 計算から見積もられた Bi-O,Ti-O 間の結合距離を**表1**に まとめている。Bil-O と Bi2-O の平均結合距離は 0.2647 nm と 0.2851 nm と見積もられた。VBM には、Bi 6s 状態に 起因する局在状態が出現するが、Bi2 よりも Bil の方がより

図6 Bi₄Ti₃O₁₂の結晶構造

高エネルギー側に局在化した。一方、Til-OとTi2-Oの結合距離はそれぞれ 0.1966 nm と 0.2007 nm である。Bil-OやBi2-Oの結合距離と比較すると、Til-OとTi2-Oの結合距離が短かく、Bi4Ti₃O₁₂の安定性に強く寄与するが、VBM は Bi 6s 状態に支配され、CBM は O 2p の影響を強く受ける。このことは、Bi₄Ti₃O₁₂の光学吸収が Bi-O 間の相互作用に支配され、その制御が顔料の発色特性において重要であると予想される。

図7 Bi₄Ti₃O₁₂ のエネルギーバンド構造

4.2 Bi₂Zr₂O7系

Bi₂Zr₂O₇ 粒子は、錯体重合法により合成 を行った。蒸発乾固から得られた前駆体を、 空気中750 ℃で焼成すると少量の ZrO2 が 含まれるものの、高純度の Bi₂Zr₂O₇ が生成 した。**図8**に、Bi₂Zr₂O₇の拡散反射スペクト ルを示している。UV-vis 測定より、Bi₂Zr₂O₇ 粉体の光学的バンドギャップは2.38 eVと見 積もられ文献値と類似した [10]。Bi₂Zr₂O₇ に V を添加すると主相が γ-Bi₂O₃ へと変 化し、少量の Zr₂V₂O₇ や ZrO₂ が混在し た。この状況は、V の添加量を変えた試料 でも同様であった。V を添加した試料で

は、光学的バンドギャップが拡大し、γ-Bi₂O₃の 2.8 eV と一致した [11]。 $L^*a^*b^*$ 色度測定では、黄色度を示す b^* 値が Bi₂Zr₂O₇ への V 添加によって減少した(表2)。 次に、R-doped および (R, V)-doped Bi₂Zr₂O₇ (R = Mg,

Ca, Sr, Ba) について、第一原理分子動力学計算と第一原 理バンド計算を実施した。図9には、V⁵⁺-doped Bi₂Zr₂O₇結 晶構造を示している。図10と図11には、Bi₂Zr₂O₇ および Vdoped Bi₂Zr₂O₇の状態密度を示している。Zr を V で置換 すると、Bi₂Zr₂O₇のバンドギャップ中に V 3d に起因する 不純物準位が形成された。(R, V)-doped Bi₂Ti₂O₇の場合と同 様、CaをVと共添加すると、V-O間の電荷移動型吸収が 増強された。これより、V を添加した BZO の発色は、Ca の共添加で向上することが期待されるが、VとBi₂Zr₂O₇ との反応が進行するため、Vとの反応性を抑制するような異 種元素の添加が不可欠と考えられた。

図 10 Bi₂Zr₂07 の状態密度

表1 Bi₄Ti₃O₁₂ における Bi-O 及び Ti-O 結合距離 (Å)

No.	Bil	Bi2	Til	Ti2
1	2.23994	2.13063	1.85235	1.71829
2	2.31447	2.31224	1.85235	1.93083
3	2.36006	2.36506	2.00906	1.98491
4	2.46734	2.42357	2.00906	1.98686
5	2.51286	2.53064	2.03712	2.08926
6	2.61822	2.69262	2.03712	2.33085
7	2.86709	3.11165		
8	2.89279	3.24944		
9	3.05564	3.31716		
10	3.14644	3.56599		
11		3.65877		
Average	2.64749	2.85071	1.96618	2.00683

表2 Bi₂Zr₂O₇の L^{*}a^{*}b^{*} 表色系におけ る色度座標

• — ••••			
Sample	L	а	b
undoped	73.8	1.9	44.0
5 mol% V	75	-1.6	32.3
10 mol% V	79.8	-5.6	22.8

図9 V-doped Bi₂Zr₂07 の結晶構造

図11 V-doped Bi₂Zr₂07 の状態密度

4.3 Bi2Ce2O7系

Bi₂Ce₂O₇ 粒子の調製とキャラクタリゼーションを実施した。錯体重合法から得られた前 駆体を空気中 500~700 °Cで焼成し、不純物相を含まない Bi₂Ce₂O₇ 相が生成することを粉 末 X 線回折 (XRD) 測定により確認した。800 °C焼成では、Bi₂Ce₂O₇ 以外の小さな回折ピ ークが確認され Bi₂O₃ 相に帰属されると推測された。5 mol% および 10 mol% V-doped Bi₂Ce₂O₇ では、800 °Cで焼成しても不純物相のピーク強度がほとんど観察されなくなった。 5 mol% V-doped Bi₂Ce₂O₇ に Ca や La を共添加したところ、Ca 添加では不純物相生成が促 進され、La では抑制が維持された。

吸光度特性を評価するために、UV-vis 吸光度測定を実施したところ、空気中 500~800 $^{\circ}$ で焼成された Bi₂Ce₂O₇ のバンドギャップは約 2.4 ~ 2.5 eV であった [12]。5 mol % および 10 mol % V-doped Bi₂Ce₂O₇ では約 2.5 ~ 2.6 eV であり、わずかにレッドシフトすることが確認されたが、Ca や La を共添加してもバンドギャップにおいて顕著な変化は確認されなかった。しかしながら、V 単独ドープの場合と比較して、共添加では可視光領域において吸光度が増加することがわかった。

吸光度の増加を確認するために、カラーリーダーを用いて $L^*a^*b^*$ 表色系における色度座 標を調べた。各試料の色度評価の結果を**表3**にまとめている。黄色度は b^* の値で評価され る。 $L^*a^*b^*$ 表色系における色度座標の結果から、V を添加すると b^* 値 が高くなった。V と Ca 及び V と La を共添加した Bi₂Ce₂O₇では、添加量が多いほど b^* 値も高くなった。焼成温 度が低い方の試料が高いものよりも、黄色度が高いことが確認された。

表 4 Bi ₂ Ce ₂ O ₇ の色度評価の結果			
Sample	L^*	a^*	b^{*}
undoped	64.2	7.0	42.8
V-doped	75.7	2.8	44.0
(V, Ca)-codoped	77.4	3.4	46.6
(V, La)-codoped	69.3	2.0	40.3

(参考文献)

- [1] 增井敏行, 温 都蘇, 今中信人, J. Jpn. Colour. Mater., 84, 439 (2011).
- [2] D. Guo, Q. Yang, P. Chen, Y. Chu, Y. Zhang, P. Rao, Dyes Pigments, 153, 74 (2018).
- [3] A. L. Hector, S. B. Wiggin, J. Solid State Chem., 177, 139 (2004).
- [4] J. P. Perdew, Y. Wang, *Phys. Rev. B*, 45, 13244 (1992).
- [5] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
- [6] V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, R. H. Nobes, *Int. J. Quantum Chem.*, 77, 895910 (2000).
- [7] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, "WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties", K. Schwarz, Techn. Universitat Wien, Austria (2001) ISBN 3-9501031-1-2.
- [8] A. McInnes, J. S. Sage, K. G. U. Wijayantha, Mater. Lett., 137, 214 (2014).
- [9] D. J. Singh, S. S. A. Seo, H. N. Lee, *Phys. Rev. B*, 82, 180103(R) (2010).
- [10] D. Wu, T. He, J. Xia, Y. Tan, Mater. Lett., 156, 195 (2015).
- [11] Y. Wang, Z. Li, H. Yu, L. Guo, Mater. Sci. Semicond. Process, 64, 55 (2017).
- [12] A. K. V. Raj, P. P. Rao, T. S. Sreena, T. R. A. Thara, Dyes Pigment, 160, 177 (2019).

5.主な発表論文等

〔雑誌論文〕 計12件(うち査読付論文 12件/うち国際共著 0件/うちオープンアクセス 12件)

1.著者名 K. Nakamura, S. Matsushima, J. Ishii, M. Arai, K. Obata	4.巻 130
2.論文標題	5 . 発行年
Effect of M-doping (M = AI, Y, La) on the electronic structure of V-doped ZrO2: A first-	2022年
principles study	
3.雑誌名	6.最初と最後の頁
Journal of the Ceramic Society of Japan	925-932
掲載論文のD01(デジタルオブジェクト識別子)	査読の有無
10.2109/jcersj2.22101	有
「オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-

1.者者名 S.Matsushima, R.Kaminaga, J.Ishii, M.Arai, K.Obata	4.
2 . 論文標題	5 . 発行年
Effect of V-doping on the electronic structure of Bi2Zr207: A first-principles study	2023年
3. 雑誌名	6 . 最初と最後の頁
北九州工業高等専門学校研究報告	31-36
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
なし	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	

1.著者名	4.巻
小畑賢次,渡部佳菜,松嶋茂憲	56
2.論文標題	5 . 発行年
Ti02をベースとした黄色系無機顔料の調製及びキャラクタリゼーション ~ 異種元素(V及びZr元素)の添	2023年
加効果 ~	
3. 雑誌名	6.最初と最後の頁
北九州工業高等専門学校研究報告	47-50
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
なし	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-

1.著者名	4.巻
Doi Akane、Obata Kenji、Matsushima Shigenori、Hojo Hajime、Einaga Hisahiro	47
2.論文標題	5 . 発行年
Fabrication and characterization of La-added MgFe204 as catalyst support for CO oxidation	2021年
3. 雑誌名	6.最初と最後の頁
Ceramics International	32786 ~ 32793
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1016/j.ceramint.2021.08.175	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-

1.著者名	4.巻
Obata Kenji、Matsushima Shigenori	33
2.論文標題	5.発行年
CO Sensing Properties of La-added MgFe2O4 Powders	2021年
3 . 雑誌名	6 . 最初と最後の頁
Sensors and Materials	3213~3213
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.18494/SAM.2021.3446	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	

1.著者名 Xin Liu, Ya Zhang, Shigenori Matsushima, Takeharu Sugiyama, Hajime Hojo, Hisahiro Einaga	4.巻 5
	5.発行年
Rational design of Cu-doped ZnS nanospheres for photocatalytic evolution of H2 with visible light	2022年
3.雑誌名	6.最初と最後の頁
ACS Applied Energy Materials	1849-1857
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
なし	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-

1.著者名 松嶋茂憲・中村光騎・石井純子・小畑賢次	4.巻 ⁵⁵
	5.発行年
V-doped B1211207にのけるアルガリ工類元系の添加効果 - 弟一原理ハノト計算による検討 -	2022年
3. 雑誌名	6.最初と最後の頁
北九州工業高等専門学校研究報告	29-33
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-

1.著者名	4.巻
小畑賢次,松嶋茂憲	55
2.論文標題	5 . 発行年
アルカリ土類金属とVを共添加したY2Ti207の調製及びキャラクタリゼーション	2022年
3. 雑誌名	6.最初と最後の頁
北九州工業高等専門学校研究報告	49-52
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
なし	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-

1.著者名	4.巻
S. Matsushima, M. Arai, J. Ishii, K. Nakamura	128
2 . 論文標題 Electronic structure and optical properties of Y2BaCuO5 with antiferromagnetic spin arrangements	5 . 発行年 2020年
3.雑誌名	6.最初と最後の頁
J. Ceram. Soc. Jpn	1055-1060
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.2109/jcersj2.20154	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-
1.著者名	4 . 巻
X.Liu. Ya Zhang, S. Matsushima, H. Hojo, H. Einaga	402
2 . 論文標題 Photocatalytic oxidation process for treatment of gas phase benzene using Ti3+ self-doped Ti02 microsphere with sea urchin-like structure	5 . 発行年 2020年
3.雑誌名	6.最初と最後の頁
Chem. Eng. J.	126220-1-11
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1016/j.cej.2020.126220	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	
1 . 著者名	4.巻
松嶋茂憲,石井純子,中村光騎,小畑賢次	54
2.論文標題	5 . 発行年
V5+をドープしたBi2Ti207の固体電子構造	2021年
3. 雑誌名	6.最初と最後の頁
北九州工業高等専門学校研究報告	29-32
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
なし	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-
1.著者名 小畑賢次,松嶋茂憲	4 .
2 . 論文標題	5 . 発行年
Laを添加したMgFe204系C0センサにおける水蒸気の影響	2021年
3. 雑誌名	6 . 最初と最後の頁
北九州工業高等専門学校研究報告	43-46
掲載論文のD0I(デジタルオプジェクト識別子)	査読の有無
なし	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	

〔学会発表〕 計8件(うち招待講演 1件/うち国際学会 3件)

1.発表者名 K. Obata

2.発表標題

CO2 Sensing Properties of CaFe2-xMxO4 Powder (M = Si, Ti, Hf, Zr)

3 . 学会等名

International Symposium on Innovative Engineering2021(ISIE) (in Kitakyushu)(招待講演)

4.発表年

2022年

1.発表者名

Hina Hoshii, Masaya Shin, Toru Okawara and Kenji Takehara

2.発表標題

Fine tuning of solid-state luminescent properties of bipyrrole fluorophore by simple alkyl substituents

3 . 学会等名

The 5th International Union of Materials Research Societies, International Conference of Young Researchers on Advanced Materials(国際学会) 4.発表年

2022年

1.発表者名

Yu Hui Lim, Toru Okawara, Hiromu Imaji, and Shigenori Matsushima

2.発表標題

Development of aggregation-induced emission dyes based on pyrrol-2-ylmethylene derivatives

3 . 学会等名

International Symposium on Innovative Engineering2021(ISIE) (in Kitakyushu)(国際学会)

4. <u></u>発表年 2022年

1.発表者名

Toru Okawara, Yu Hui Lim, Miku Inoue, So Ueno, Tenki Miura, Hiromu Imaji Toshikazu Ono, and Shigenori Matsushima

2.発表標題

Relationship Between Molecular Structure and Photoluminescent properties of pyrrole-2-ylmethylene derivatives

3 . 学会等名

KOSEN Research International Symposium 2023(国際学会)

4.発表年 2023年 1.発表者名

大川原 徹、糒 日菜、塩田 大成、進 征哉、竹原 健司

2.発表標題

ビピロール系色素の固体光物性に及ぼす側鎖エステル基の嵩高さの影響

3.学会等名第32回基礎有機化学討論会

4 . 発表年 2022年

1 . 発表者名 リム ユフィ、三浦 天聖、大川原 徹、竹原 健司

2.発表標題

ピロール-2-イルメチレン誘導体による水溶性非イオン性凝集誘起発光性色素の開発

3.学会等名

第59回化学関連支部合同九州大会

4 . 発表年 2022年

1.発表者名 生駒優太、小畑賢次、松嶋茂憲

2 . 発表標題

MgFe2-xLax04 を用いた CO センサにおける水蒸気の影響

3 . 学会等名

2021年度 日本セラミックス協会九州支部 秋季研究発表会

4 . 発表年 2021年

1.発表者名
中村光騎、松嶋茂憲、新井正男、石井純子、小畑賢次

2.発表標題

反強磁性スピン配列を持つ Y2BaCuO5 に関する第一原理バンド計算

3 . 学会等名

日本セラミックス協会 第34回 秋季シンポジウム

4.発表年 2021年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

松嶋茂憲の Researchmap のマイページ https://researchmap.jp/read0171335 小畑賢次の Researchmap のマイページ https://researchmap.jp/read0113900 大川原徹の Researchmap のマイページ https://researchmap.jp/okawara1103

6.研究組織

0	,抑力組織		
	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
研究分担者	小畑 賢次 (Obata Kenji)	北九州工業高等専門学校・生産デザイン工学科・准教授	
	(70370046)	(57103)	
研究分担者	大川原 徹 (Okawara Toru)	北九州工業高等専門学校・生産デザイン工学科・准教授	
	(50632650)	(57103)	

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関
---------	---------