科学研究費助成事業

研究成果報告書

今和 5 年 6 月 2 1 日現在 機関番号: 12608 研究種目: 基盤研究(C)(一般) 研究期間: 2020~2022 課題番号: 20K05245 研究課題名(和文)単分子接合の力学的応答性に基づいた物性と機能発現機構の解明 研究課題名(英文)Electromechanical Properties of Single-Molecule Junctions 研究代表者 藤井 慎太郎 (Fujii, Shintaro)

東京工業大学・理学院・特任准教授

研究者番号:70422558

交付決定額(研究期間全体):(直接経費) 3,300,000円

研究成果の概要(和文):単分子接合は、単分子素子としての応用や有機電子デバイスにおける金属 分子界面 のモデル系、そして金属と単分子が複合化した新たな物質系として注目を集めている。単分子接合では界面構造 や分子配座が可逆的に変化し、電気輸送特性、熱電特性などの物性が可変的な力学応答性を示す。本研究では、 機械的に分子配向や分子-金属間の界面構造を変化させることで、単分子接合の熱電能について、機械的変調性 の解明を行った。機械的外力を加えることにより、単分子接合の熱電能が増減することを確認した。理論的シミ ユレーションにより機械的に誘起される界面構造と分子軌道エネルギーの変化に応じて、熱電能が変調すること を見出した。

研究成果の学術的意義や社会的意義 単分子接合の物性の力学的応答性に着目し、従来の孤立分子や結晶では発現しない、または隠れていた物性の解 明を行った。単分子接合ではナノメートルスケールの微小な電極変位に起因する外力に対し、熱電能が応答性を 示すことを見出した。本研究は、将来の分子エレクトロニクス実装に必要な、熱電特性を制御する新たな力学的 なアプローチのひとつを提供するものである。

研究成果の概要(英文):Single-molecule junctions have attracted attention for their application as single-molecule devices and as model systems for metal-molecule interfaces in organic electronic devices. In single-molecule junctions, the interface structure and molecular conformation change reversibly, and the properties such as electrical transport and thermoelectric properties exhibit tunable mechanical response. In this study, we investigate the mechanical modulation of thermoelectric properties of single-molecule junctions by mechanically changing the molecular orientation and the structure of the molecule-metal interface. We confirmed that the thermopower of single-molecule junctions can be increased or decreased by applying mechanical external forces. Theoretical simulations revealed that the t thermopower modulates in response to mechanically induced changes in the metal-molecule interface structure and molecular orbital energy.

研究分野:表面科学

キーワード:単分子接合 ブレイクジャンクション 電気伝導度 熱起電力

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1版

1.研究開始当初の背景

単分子が微小な電極の間を架橋してできた単分子接合は、微小電子素子への応用、電子デバイス における分子—金属界面構造のモデル系として注目を集めている。単分子レベルでは分子配座 や分子—金属間の界面構造が外力に対して鋭敏に応答して、単分子接合の物性が大きく変化し てしまうため実験の再現性が低い、革新的な物性・機能発現の仕組みが理解されていないなどの 課題が多い。本研究では、これまで調べることが出来なった単分子接合の構造・電子状態を決定 する計測法を開発し、物性との同時計測により実験の再現性の課題を解決する。更に、単分子接 合の物性の力学的応答性に着目し、従来の孤立分子や結晶では発現しない、または隠れていた物 性・機能を単分子接合に発現させるとともに、それらの計測法の開発を行う。

2.研究の目的

本研究の目的は、単分子接合に力学応答性に取り組み、単分子接合にこれまでにない新物性・機 能を創出することである。単分子接合の物性は、分子配座、界面構造に大きく依存するため、孤 立分子や結晶など他の系にはない物性・機能の発現の仕組みが存在する。外力により単分子接合 の分子配座、界面構造を変調することで、巨大熱起電力、ダイオード特性、メモリ特性などを発 現できれば、単分子接合の特徴を活かした新しい物性・機能の創出が可能となる。

単分子接合のゼーベック係数はフェルミ準位における単分子接合の電子透過率のエネルギー 微分に比例するため、単分子接合の透過率と同様に、熱電能も分子の配向や分子-金属間の界面 構造によって大きく変化することが期待される。そこで本研究では、機械的に分子配向や分子 -金属間の界面構造を変化させることで、単分子接合の熱電能を機械的制御するとともに、機械的 変調性が現れる仕組みの理解を目指した。

3.研究の方法

改良した走査型トンネル顕微鏡(scanningtunnelingmicroscopy(STM))を用い、金探針と金(111) 電極の間にプレイクジャンション法を用いて単分子接合を作製した。STM サンプルホルダに取 り付けたヒーターを用いて金(111)電極を加熱することで、金探針と金電極の間に作製された

単分子接合に 0~40 [K] 程度の温度 勾配を印加した。その後、単分子接 合を圧縮させながら単分子接合の 熱電能の計測を行った(図1)。ブ レイクジャンクション法を用いて 原子レベルの精度で分子を圧縮 し、単分子接合の圧縮距離と熱電 能の相関が明らかになった。単分 子接合研究において標準的な分子 であるフラーレン(C₆₀)4,4'-ビピリ ジン(BPY) p-フェニレンジアミン (PPD)を計測対照とした(図1a)

Figure 1. (a) Molecular structure investigated in this study (b) Experimental setup for the thermopower measurement of the single-molecule junctions (SMJs). To compensate for the thermoelectric voltage across the leads, a Au wire is used to apply voltage to the heated Au substrate, which is connected to the sample stage at room temperature. (c) Example of current-voltage curves for a C₆₀-SMJ, measured at temperature differences of 0 K and 10 K.

4.研究成果

図 1b に単分子接合の熱電能計測のための実験セットアップを示す。金探針は室温に保ち、Au 電極の温度はペルチェ素子で制御した。まず、バイアス電圧を 0.5 [mV]で一定に保ち、ターゲット分子(C_{60} 、BPY、PPD)で表面修飾された金電極に金探針を接近させて分子接合を作製した。単分子接合を形成した後、金探針の位置を固定し、単分子接合に一定の温度差を与えながらバイアス電圧を 0.5 [mV] ~ -1.5 [mV]まで変化させて電流-電圧(I-V)カーブを測定した。熱起電力は($V_{\rm th}$)は、単分子接合に温度勾配がある場合とない場合の I-V 曲線におけるゼロ電流時のバイアス電圧シフトとして得られた。図 1c は、接合部の温度差(T)が 10 [K]である C_{60} 単分子接合の例を示しており、この例では $V_{\rm th}$ は 0.25 [mV]であった。統計的に有意なデータセットが得られるまで、単分子接合の熱起電力計測を行った。

図 2a-c は、単分子接合の温度差を変えた場合の C_{60} 、BPY、PPD の V_{th} 値の分布を示す。各 分布はブロードなピークを示し、このピーク位置は温度差とともにシフトする。 V_{th} のピーク値 は、分布をガウス関数でフィッティングすることによって得られた。熱起電力は、以下の式に従 って、温度差とともに直線的に変化する ($V_{th} = -S \Delta T$)。ここで S は熱電能である。単分子接 合の熱電能 (S_{mol}) は、 C_{60} では-10 [μ V/K]、BPY では-17 [μ V/K]、PPD では+7 [μ V/K]と決定 された。本研究で決定された熱電能の符号はこれらの先行報告と一致しており、PPD 接合の HOMO 伝導性、および C_{60} と BPY の LUMO 伝導性を示している。

次に、単分子接合の熱電能の圧 縮距離依存性を調べた。図 3a に、 測定プロセスの模式図と、測定にお ける印加バイアス電圧、電流、探針 の位置(Z)を時間の関数として示 す。上述したように、まず 0.5 [mV] で一定のバイアス電圧を印加しな がら、ターゲット分子が吸着した金 電極に金探針を近づけた(図 3aの 矢印参照)。コンダクタンス(G)が 単分子接合の形成に特徴的な値(G $= 10^{-4} \sim 10^{-1} G_0$) に到達した際に、金 探針の動きを止め、金探針の位置(Z $= Z_{mol}$)を測定した。ここで、 $G_0 =$ 2e²/h は量子化コンダクタンスであ る。その後、バイアス電圧を 0.5 [mV]から-1.5 [mV]まで変化させ、 単分子接合の I-V 曲線を計測した。 ここで、単分子接合の熱起電力は、 *I-V* 曲線におけるゼロ電流時のバ イアス電圧のシフト量として求め た。その後、金探針を金電極に接近 させ、単分子接合のコンダクタンス が閾値コンダクタンス(1 G_0)まで 急激に増加する探針位置(Z = Z₀) を決定した。この位置で、金の原子 接触が形成されたため、この位置を Z0=0と定義した。このようにして、 単分子接合のサイズ Z_{mol} (すなわ ち、分子の圧縮距離)を決定した。 この測定スキームは、統計的に有意 なデータセットが得られるまで繰 り返された。

図 3b は、PPD 単分子接合のサ イズに対する熱出力依存性を示し ており、これは 12,778 個の異なる 接合について得られたデータから 構築された。単分子接合が圧縮され るにつれて、熱電能の正の値が徐々 に小さくなっていることがわかる。 図 4a-c は、C₆₀、BPY、PPD につい て、分子サイズに対する熱電能の 依存性を示している。熱電能の変 化率は、C₆₀で27[µV/K・nm]、BPY で-17 [µV/K・nm]、PPD で 2 [µ V/K・nm]であった。単分子接合を 圧縮することで、C60では熱電能の 絶対値が増加し(より負) BPY で は熱電能の絶対値が減少した(よ り負) PPD では熱電能の絶対値が 減少した(より正)。

Figure 2. Distribution of thermoelectric voltage (V_{th}) for (a) C_{60} , (b) BPY, (c) PPD singlemolecule junctions (SMJs), measured at different temperature differences, Plot of peak values of V_{th} in the distribution for (d) C_{60} , (e) BPY, (f) PPD-SMJs, as a function of temperature difference.

Figure 3. (a) Evaluation of the nanogap distance (i.e., tip-electrode separation distance) of the SMJ. The displacement of the STM tip (Z), tip bias voltage, corresponding electric current through the junction as a function of time (b) Thermopower (S) plotted as a function of the gap size for the PPD-SMJs measured at temperature difference of 15 K. The red points show the average S values as a function of the nanogap distance (bin size: 0.1 nm). The dotted line corresponds to the size of PPD molecule, blue line with arrows indicate the evaluation range.

観察された熱電能の変調性を理解するために、密度汎関数理論と非平衡グリーン関数法 (DFT-NEGF)を用いた理論シミュレーションを行った。単分子接合は25個の金原子を5×5に 配列した複数の金レイヤーの間に標的分子を配置することでシミュレートした。図5は、さまざ まな分子圧縮距離における C₆₀、BPY、PPD の透過スペクトルを示している。C₆₀と BPY では、 LUMO がフェルミ準位に最も近いが、一方、PPD では HOMO がフェルミ準位に近い。分子接合 が圧縮されるにつれ、C₆₀の場合、LUMO ピークはフェルミ準位に向かって下がる。しかし、BPY と PPD では、圧縮されるにつれ、LUMO と HOMO ピークがフェルミエネルギーから離れてい く。

接合部の圧縮に伴う熱起電力の計算値の変化を図 6 に示す。非圧縮時は、計算値は C₆₀ で -29.4 [μV/K]、BPY で-35.7 [μV/K]、PPD で 35.6 [μV/K]である。ギャップを閉じ、分子接合を 圧縮すると、これらの値は BPY で-16.8 [µV/K]に増加し、C₆₀と PPD ではそれぞれ-52.2 [µV/K] と14.2 [µV/K]に減少する。熱電 能の変化率の計算値は、C₆₀で 16.9 [µ V/K・Å]、ВРУ で-12.7 [µ V/K・Å]、PPD で 14.7 [µV/K・ Å]であった。計算値は測定値を 過大評価している。これは DFT における分子軌道エネルギーの 計算誤差によるものである。し かし、実験で観察された傾向は、 C₆₀では正の勾配、PPD では小さ い正の勾配、BPY では負の勾配 と、よく理論計算結果と一致し ている(図4)。計算から得られ た物理的なイメージは、分子を 機械的に圧縮することで伝導特 性が変化するというものであ る。特に、関連する分子軌道エネ

Figure 5. Transmission spectra for (a) C_{60} , (b) BPY, and (c) PPD molecular junctions. Colour lines represent different electrode separations.

Figure 6. Calculated thermopower as a function of the electrode separation, for (a) $C_{60},$ (b) BPY, and (c) PPD junctions.

ルギーは分子圧縮によってシフトし、その結果、フェルミ準位における透過関数の傾きが変化し、 熱電特性が変化する。

本研究では、ブレイクジャンクション実験と DFT シミュレーションを用いて、単分子接合の熱電力を機械的に調整できることを示した。C₆₀、BPY、PPD について、金探針と金電極の間の距離を機械的変化させることにより、単分子接合の熱電能を制御した。単分子接合の熱起電力の機械的変調性は、機械的圧縮によって誘発される伝導分子軌道エネルギーのシフトによって説明された。

5.主な発表論文等

〔雑誌論文〕 計6件(うち査読付論文 6件/うち国際共著 2件/うちオープンアクセス 1件)	
1.著者名	4.巻
S. Fujii, E. Montes, H. Cho, Y. Yue, M. Koike, T. Nishino, H. Vazquez, M. Kiguchi	8
2.論文標題	5 . 発行年
Mechanically Tuned Thermopower of Single-Molecule Junctions	2022年
3.維誌名 Adv. Electrop. Mater	6. 最初と最後の貝 2200700
Adv. Electron. mater.	2200700
掲載論文のD0 (デジタルオブジェクト識別子) 10.4002/colm 202200700	査読の有無
10.1002/de1m.202200/00	行
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	該当する
1 茎老夕	4 类
Y. 自自口 Y. Isshiki, D. Li. M. Kiquchi, T. Nishino, F. Pauly, S. Fuiii	4.25 14
······································	
2.論文標題	5.発行年
Structural Asymmetry of Metallic Single-Atom Contacts Detected by Current-Voltage	2022年
3. 雑誌名	6.最初と最後の頁
ACS Appl. Mater. Interfaces	11919-11926
	査読の有無
10.1021/acsami.1c24096	有
オーフンアクセス オープンアクセスでけない、又けオープンアクセスが困難	国際共者 該当する
オーランテラビスではない、 スはオーランテラビスが 困難	181910
1.著者名	4.巻
Y. Isshiki, T. Nishino, S. Fujii	125
	г 3%/- <i>Г</i> -
2.	5 .
of -conjugated System	2021-
3. 雑誌名	6.最初と最後の頁
J. Phys. Chem. C	3472-3479
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1021/acs.jpcc.0c05478	有
10.1021/acs.jpcc.0c05478 オープンアクセス	有
10.1021/acs.jpcc.0c05478 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	有 国際共著 -
10.1021/acs.jpcc.0c05478 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	有 国際共著
10.1021/acs.jpcc.0c05478 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難 1.著者名	有 国際共著 - 4.巻
10.1021/acs.jpcc.0c05478 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難 1.著者名 S. Fujii, M. Iwane, S. Furukawa, T. Tada, T. Nishino, M. Saito, M. Kiguchi	有 国際共著 - 4.巻 124
10.1021/acs.jpcc.0c05478 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難 1.著者名 S. Fujii, M. Iwane, S. Furukawa, T. Tada, T. Nishino, M. Saito, M. Kiguchi 2.論文標題	有 国際共著 - 4.巻 124 5.発行年
10.1021/acs.jpcc.0c05478 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難 1.著者名 S. Fujii, M. Iwane, S. Furukawa, T. Tada, T. Nishino, M. Saito, M. Kiguchi 2.論文標題 Hybrid Molecular Junctions Using Au-S and Au- Bindings	有 国際共著 - 4.巻 124 5.発行年 2020年
10.1021/acs.jpcc.0c05478 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難 1.著者名 S. Fujii, M. Iwane, S. Furukawa, T. Tada, T. Nishino, M. Saito, M. Kiguchi 2.論文標題 Hybrid Molecular Junctions Using Au-S and Au- Bindings	有 国際共著 - 4.巻 124 5.発行年 2020年 6. 星初と星後の百
10.1021/acs.jpcc.0c05478 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難 1.著者名 S. Fujii, M. Iwane, S. Furukawa, T. Tada, T. Nishino, M. Saito, M. Kiguchi 2.論文標題 Hybrid Molecular Junctions Using Au-S and Au- Bindings 3.雑誌名 J. Phys. Chem. C	有 国際共著 - 4.巻 124 5.発行年 2020年 6.最初と最後の頁 9261-9268
10.1021/acs.jpcc.0c05478 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難 1.著者名 S. Fujii, M. Iwane, S. Furukawa, T. Tada, T. Nishino, M. Saito, M. Kiguchi 2.論文標題 Hybrid Molecular Junctions Using Au-S and Au- Bindings 3.雑誌名 J. Phys. Chem. C	有 国際共著 - 4.巻 124 5.発行年 2020年 6.最初と最後の頁 9261-9268
10.1021/acs.jpcc.0c05478 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難 1.著者名 S. Fujii, M. Iwane, S. Furukawa, T. Tada, T. Nishino, M. Saito, M. Kiguchi 2.論文標題 Hybrid Molecular Junctions Using Au-S and Au- Bindings 3.雑誌名 J. Phys. Chem. C	有 国際共著 - 4.巻 124 5.発行年 2020年 6.最初と最後の頁 9261-9268
10.1021/acs.jpcc.0c05478 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難 1.著者名 S. Fujii, M. Iwane, S. Furukawa, T. Tada, T. Nishino, M. Saito, M. Kiguchi 2.論文標題 Hybrid Molecular Junctions Using Au-S and Au- Bindings 3.雑誌名 J. Phys. Chem. C 掲載論文のDOI (デジタルオプジェクト識別子) 10.1021/acs.jpcc.9b11725	有 国際共著 - 4.巻 124 5.発行年 2020年 6.最初と最後の頁 9261-9268 査読の有無
10.1021/acs.jpcc.0c05478 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難 1.著者名 S. Fujii, M. Iwane, S. Furukawa, T. Tada, T. Nishino, M. Saito, M. Kiguchi 2.論文標題 Hybrid Molecular Junctions Using Au-S and Au- Bindings 3.雑誌名 J. Phys. Chem. C 掲載論文のDOI (デジタルオブジェクト識別子) 10.1021/acs.jpcc.9b11725	有 国際共著 - 4.巻 124 5.発行年 2020年 6.最初と最後の頁 9261-9268 査読の有無 有
10.1021/acs.jpcc.0c05478 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難 1.著者名 S. Fujii, M. Iwane, S. Furukawa, T. Tada, T. Nishino, M. Saito, M. Kiguchi 2.論文標題 Hybrid Molecular Junctions Using Au-S and Au- Bindings 3.雑誌名 J. Phys. Chem. C 掲載論文のDOI (デジタルオプジェクト識別子) 10.1021/acs.jpcc.9b11725 オープンアクセス	有 国際共著 - 4.巻 124 5.発行年 2020年 6.最初と最後の頁 9261-9268 査読の有無 有 国際共著

1.著者名 Y. Isshiki, S. Fujii, T. Nishino, M. Kiguchi	4.巻 ²²
2.論文標題 Selective Formation of Molecular Junctions with High and Low Conductance States by Tuning the Velocity of Electrode Displacement	5 . 発行年 2020年
3.雑誌名 Phys. Chem. Chem. Phys.	6 . 最初と最後の頁 4544-4548
掲載論文のDOI(デジタルオブジェクト識別子) 10.1039/C9CP06487G	査読の有無 有
オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	国際共著
〔学会発表〕 計6件(うち招待講演 1件/うち国際学会 3件)	
1.発表者名 S. Fujii	
2.発表標題 Thermal and thermoelectric properties of molecular junctions	
3. 学会等名 A3 Foresight International Symposium 2022, Functionalization and Flexible Device Application of Inorganic Material (招待講演) (国際学会)	Atomic Scale Organic and
4.発表年 2022年	
1.発表者名 Y,長はる菜,藤井慎太郎,西野 智昭	
2.発表標題 単分子熱起電力の機械的変調	
3 . 学会等名 日本化学会 第102春季年会	
4.発表年 2022年	
1.発表者名 藤井 慎太郎,庄子 良晃,福島 孝典,西野 智昭	
2.発表標題 単一分子接合のクロミズムと熱電能	
3.学会等名 第69回応用物理学会春季学術講演会	

1.発表者名

Y. Isshiki, E. Montes, N. P. Arasu, T. Nishino, H. Vazquez, S. Fujii

2.発表標題

Electronic Structure of a Single-Molecule Junction during the Junction-Breaking Process

3 . 学会等名

The 9th International Symposium on Surface Science (ISSS-9)(国際学会)

4.発表年

2021年

1.発表者名

S. Fujii, E. Montes, H. Cho, Y. Yue, M. Koike, M. Kiguchi, H. Vazquez, T. Nishino

2.発表標題

Mechanically Tuned Thermopower of Single-Molecule Junctions

3 . 学会等名

The 9th International Symposium on Surface Science (ISSS–9)(国際学会)

4.発表年

2021年

1.発表者名

藤井 慎太郎,長 はる菜,西野 智昭,木口 学

2.発表標題

単分子熱起電力の機械的変調

3 . 学会等名

第68回応用物理学会春季学術講演会

4 . 発表年

2021年

〔図書〕 計2件

1.著者名 122.藤井慎太郎	4 . 発行年 2021年
2.出版社	5.総ページ数
朝倉書店	6
3.書名 図説表面分析ハンドブック Chapter 23.1原子間力顕微鏡	

1.著者名	4 . 発行年
122.藤井慎太郎	2021年
2. 出版社	5 . 総ページ数
朝倉書店	₆
3.書名 図説表面分析ハンドブック Chapter 24.1走査トンネル顕微鏡	

〔産業財産権〕

〔その他〕

6 . 研究組織

-

氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関			
チェコ	Czech Academy of Sciences			
ドイツ	University of Augsburg			