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Nuclear magnetic resonance spectroscopy (NMR) provides detailed information on structure, dynamics
and interactions of proteins. The method developed in this project will accelerate virtually any
biological NMR studies that require the analysis of protein NMR spectra and chemical shift
assignments.

We have incorporated the use of protein structures predicted by AlphaFold2
into our fully automated NMR spectra analysis algorithm ARTINA, which yields peak lists, chemical
shift assignments, and three-dimensional protein structures directly from a set of multidimensional
NMR spectra without any manual work. The AlphaFold2 structures can be used in ARTINA for the
structure-based prediction of approximate chemical shifts and for generating the cross peaks
expected in NOESY-type spectra. It could be shown that the AlphaFold2 structures enable to obtain
reliable chemical shift assignments from smaller sets of NMR spectra than without structures. Thus,
NMR measurement times can be significantly reduced and the NMR studies of proteins becomes more
efficient. The ARTINA algorithm has been made available in the NMRtist webserver that allows
scientists to obtain assignments and structures of proteins within a few hours of computation time
rather than weeks or months of manual analysis.
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Nuclear magnetic resonance spectroscopy (NMR) is a key analytical technique that
provides detailed information on structure, dynamics, and interactions of proteins. These
data can be obtained simultaneously for a large number of individual atom positions
using the intrinsically present probes of nuclear spins. To achieve this atomic resolution,
it is necessary to attribute resonance frequencies of nuclear spins, expressed as chemical
shifts, to individual atoms in the protein. This chemical shift assignment is a key task
in most NMR studies of proteins. It is generally achieved by recording and analyzing a
set of multi-dimensional NMR spectra. Each cross peak in an n-dimensional spectrum
correlates n atoms with each other, and alignments among the cross peaks make it
possible to uniquely link chemical shift values to individual atoms in the chemical
structure of the protein. This process is generally demanding in terms of NMR
measurements and spectra analysis. Most of the spectrometer measurement time in a
biomolecular NMR project is frequently spent to measure spectra for the chemical shift
assignment, which are not of direct use to the question at stake, such as, for instance,
elucidating dynamics or interactions of the protein. The same holds for the time spent
by the spectroscopist: finding chemical shift assignments is time-consuming and requires
expertise.

To change this situation by accelerating NMR chemical shift assignment, one
should reduce the number of spectra required and automate their analysis without
compromising the reliability of the results. In this project, we developed a method that
achieves this by exploiting recent advances in machine learning and by efficiently
incorporating into the assignment process the information contained in three-
dimensional (3D) protein structures. The latter serve to replace information that would
otherwise have to be gathered from additional NMR spectra.

Knowledge of the 3D structure of a protein can support the automated chemical
shift assignment in mainly two ways: by more realistic prediction of the expected cross
peaks in NOESY spectra and through structure-based predictions of chemical shift
values. This has become particularly relevant because with AlphaFold2 accurate
predictions of the 3D structure are now generally available for most proteins.

Studying structures of proteins and ligand-protein complexes is one of the most
influential endeavors in molecular biology and rational drug design. All key structure
determination techniques, X-ray crystallography, electron microscopy, and NMR
spectroscopy, have led to remarkable discoveries, but suffer from their respective
experimental limitations. NMR can elucidate structures and dynamics of small and
medium size proteins in solution and even in living cells. However, the analysis of NMR
spectra and the resonance assignment, which are indispensable for NMR studies, remain
time-consuming even for a skilled and experienced spectroscopist. The problem has
sparked research towards automating different tasks in NMR structure determination,
including peak picking, resonance assignment, and the identification of distance
restraints. This enabled semi-automatic but not yet unsupervised automation of the
entire NMR structure determination process, except for a very small number of favorable
proteins.

The advance of machine learning techniques now offers unprecedented
possibilities for reliably replacing decisions of human experts by efficient computational
tools. We recently developed a machine learning-based method, ARTINA, to perform
completely automated analysis of protein NMR data within hours after completing the
measurements. Using only NMR spectra and the protein sequence as input, ARTINA
delivers signal positions, resonance assignments, and structures strictly without human
intervention. Through its implementation in the NMRtist website (Figure 1), ARTINA
can be used by non-experts, reducing the effort for a protein assignment or structure
determination by NMR essentially to the preparation of the sample and the spectra
measurements.

The purpose of this project was to further improve the performance of ARTINA
by combining it with protein structure prediction by AlphaFold2 in order to render the
NMR analysis of proteins more efficient and reliable.
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Figure 1. NMRtist data analysis workflow. a. A set of raw 2D/3D/4D NMR spectra and
the protein sequence are uploaded to the project data storage as input for application
calls, yielding outputs b-d. b. Example figure generated by the ARTINA peak picking
application. It presents F1 scores of automated peak picking (red dots) in comparison
with those of all spectra of the same type in a benchmark of 1329 spectra (box plot). c.
Example figure generated by the ARTINA chemical shift assignment application.
Each column corresponds to a single amino acid with color-coded confidence of
automatically assigned shift values (high/low confidence in dark/light blue,
respectively). d. Visualization of protein structures generated by the ARTINA
structure determination application. Differences between structure candidates
indicate either flexible regions or uncertainty in the structure determination.

The original ARTINA algorithm uses as input exclusively a set of multidimensional NMR
spectra and the amino acid sequence of the protein. In this project, we extended ARTINA
to handle additional types of input data, in particular 3D structures predicted by
AlphaFold2. ARTINA employs the FLYA algorithm to assign chemical shifts. FLYA uses
as mandatory input the protein sequence and peak lists from a set of NMR spectra. These
can be complemented by 3D structures and chemical shift information.

3D structures were obtained from protein sequences by AlphaFold2. They can
be used directly by FLYA for generating the cross peaks that are expected in NOESY
spectra. An expected NOESY cross peak is generated whenever the corresponding
distance is shorter than a given cutoff in a given minimal number of conformers in the
structure bundle. In the absence of an input structure, FLYA applies this criterion to an
internally generated bundle of random structures, i.e., structures with correct covalent
geometry but random torsion angle values that are only minimized to avoid steric clashes.
Consequently, only expected cross peaks that correspond to short-range distances (within
a residue or between neighboring residues) will be obtained because the distance
between two atoms located far apart in the protein sequence are highly unlikely to be
consistently short in all members of the random structure bundle. In contrast, if a well-
defined structure is provided to FLYA, also medium-range and long-range expected
NOESY cross peaks will be generated, which corresponds better to the situation in the
experimental spectra where such peaks are observed.

Input chemical shift information for FLYA may comprise statistical information
on the distribution of chemical shifts, which, if available, replaces the default statistics
used by FLYA as a priori information for the chemical shift assignment. Chemical shift
distributions are modelled in FLYA as normal distributions defined by their mean and
standard deviation. Using structure-based chemical shift prediction, one can in many
cases obtain chemical shift distributions that are more accurate (i.e., have a mean value
closer to the actual chemical shift value) and more precise (i.e., have a smaller standard



deviation then the general BMRB distribution), and thus help FLYA in determining
reliable assignments. For this, it is not necessary that the chemical shift prediction
algorithm provides the correct value with high precision. The predicted chemical shift
values are rather used in FLYA to contract the search space in order to facilitate the
assignment by decreasing the number of assignment possibilities that must be
considered during combinatorial optimization. All chemical shift predictions used in this
project were obtained for backbone HN, N, C* CB, and C’ atoms by the state-of-the-art
UCBShift method using as input 3D structures predicted by AlphaFold2.

A. All chemical shift B. HN shifts
N-HSQC
N-HSQC HNCA
g4 °N-NOESY
C-NOESY +HNCOCA +CBCANH
21 3.35/10.02 48.09/17.82
8.24/21.91 3 13/75.00 53.24/32.05
13.51/58.76
87.40/90.24/90.95 ‘CEC ANl
76.88/84.77/85.86 38 SCheN
+C-HSQC 38.74131.51
l 0.79/0.82/0.46
2.57/1.10/0.56
2 @
2 42.91/82.44 8321916 87.65/91.89
+HNCA 21.48/77.67 oo 67.82/88.12
0.73/0.9410.71 88.38/91.10/91.57 +HNCA, +HNcoCA
320/1.1211.49 80.50/85.93/86.79 LSYLED B +HNCO +CBCANH +CBCAcONH
+CBCAcONH SonzmE 13.1077.65 16.30/4.99 6.16/4.47
0.96/1.33/1.48 5.32/7.50 38.26/6.2 2283/5.88
4.81/1.54/1.86 s
51 68 3
88.01/91.16/01.97  89.33/92.48/93.00  88.64190.70/91.60 Erd 94.37138.
81.17/86.03/86.67 85.14/87.55/88.68 82.45/85.43/86.31
HNCO
+CBCAcoNH l +HCCH-TOCSY l +HCCH-TOCSY l 0. 3;/0 08/0.17 I
1.87/0.67/0.19 2.96/1.32/1.46 2.26/2.3011.47 1.15/0.66/0.84 :I1‘ ?5%7{;:‘? i 52;;9;?
3.19/0.79/0.92 3.33/3.22/2.18 4.66/3.83/2.66 7047H \4: s
44
89.96/92.26/92.49  92.53/93.92/94.75 gs iease
.96/92.26/92, .53/93.92/94. .90/92.96/93.22  89.25/91.67/92.
84.96/87.19/87.95 88.51/90.78/90.84 W R
HCCHTOCSY +CCHTOCSY SCOLETOCSY +CBCANH C. HN shifts (NOESY-based assignment)
2.201.37/2.00 0.21/1.11/0.70 0.23/0.19/1.02 0.52/0.28/0.79
é91/331/2 20 1.1711.22/12.26 652,0 00/0.79 1.96/1.80/0.60
42 41 25’ 26 - “N-labelled sample
“N-HSQC, “N-NOESY
17 22 18 5 29 :
92.15/93.63/94.48 .77/94.94/95.48 91.03/92.97/94.12 +CBCAcoNH
IR0 30018 Fogolaaes sy ¥ SHRE 8Lt O T2 Rz se 87.50/92.82/93.67 664375374
26.96/63.57/83.59 J0.06/27.03/8.74
+CCH-TOCSY . +7C-NOESY
0.44/0.87/0.40 O e sr 7.39/4.27/4.33
1.28/2.0211.77 3 54/2.88/2.13 57.17/29.95/10.81
2 84 75
31
20 7 21 28
94.89/97.09/98.00 93,24/96.34/97.22
92.50/94.36/94.87 91.87/93.75/94.46 84.13/93.52/94.40  77.89/90.18/93.25
89.04/91.60/91.52 88.05/89.89/90.17 CHSaC
0.45/-0.32/-0.78

1.04/-0.13/-0.31

0.45/0.28/-0.18
1.03/0.77/0.02

> +HNCA, +HNCOCA
0.52/1.21/1.00
17910.96/0.63
19 5.18/1.23/2.09 95/%%/34 33 3] 8.56/3.25/3.31
92.20/93.93/94.26 ‘CBC’“"N”
; 1 ) 1.0211.41
8/90/90.45/90.03 ‘,g% s
all spectra all spectra all spectra 1 4
1.86/1.29/0.82 2,60/2.14/1.03 1.15-067/1.66
2.8712.20/1.15 2.99/1.13/2.18 Taan 1008
96.88/97.96/97.89  97.38/98.. 12/98 .65 %%?ﬁlgg 93/98 4
91.36/94.48/95.52  95.60/96.73/96.70

l +CCH-TOCSY

all spectra
1.76/1.39/0.94
153/0.97/1.12

oA +HNCO
0 72/0.01/-0.11
JoRCacoNH. 1.22/0.460.12 o 06/0.03/0.38
89 4:6412.5412.20 1.98/0.62/0.74
44
IR
) : " 98.33/98.62/98. 71 97,
96.68/96.97/97.5! %%g gs gg
+CBCANH
l| 08/0.46/1.06
3.40/1.40/0.85
Num. of proteins Spectra type difference
in the dataset -~ between dalasets P VSRR AR
gg’_ Da‘(gsel +HNCA 0.51/0.87/0.60
5.72/1.86/0.81
90.17/92.32192.56 — Fiimnont 5.72/1.86/0.81 all spectra
FLYA weak 4 89 0.24/0.43/-0.43
assignments 90.17/92.32/92.56 0.00/0.55/0.12
7 | S AT Shift assignment
accuracy change 1
ARTINA  ARTINA with AlphaFold (common proteins)
with AlphaFold and UBCShift
| R IE %

Figure 2. Impact of the spectra subset selection on the accuracy of chemical shift
assignment with ARTINA with and without use of AlphaFold2 structures. Numbers
below circles give the percentage of correct assignments. Selection of the optimal
spectra subset (22) with complementary input from AlphaFold2 structures allows
identification of the chemical shifts at higher accuracy than when all spectra are used
as input but without AlphaFold2 structures.




In this project, we introduced ways to enhance, in terms of accuracy and efficiency,
automated protein chemical shift assignment with ARTINA by complementing the NMR
spectra with other types of input data, in particular 3D structures. This allows to reduce
the number of NMR spectra that are needed to establish the assignment of the protein.

Among the many possible choices of reduced sets of NMR spectra, our
calculations revealed optimal sets of NMR spectra for full (backbone and sidechain) and
backbone amide group assignment (Figure 2). These yield, together with input 3D
structures predicted by AlphaFold2, equally or almost equally good assignments as the
complete sets of (on average more than 13) experimental spectra that are available for
these proteins. On this basis, we recommend the following sets of spectra for obtaining
chemical shift assignments in proteins with ARTINA:

Table 1. Recommended spectra for protein chemical shift assignment with ARTINA.

Assignment task Recommended spectra Accuracya
2D 3D (%)
Full N15HSQC N15NOESY 955
(backbone & sidechains) C13HSQC C13NOESY
CBCAcoNH
HCCH-TOCSY
CCH-TOCSY
(Set 22)
Backbone HN groups N15HSQC N15NOESY 98.0
C13NOESY
(Set 21)
Backbone HN groups; N15HSQC N15NOESY 93.7
15N-labeling only (Set 29)

a Accuracy refers to the median of the accuracy of the strong assignments obtained for
the proteins in our study.

On average, five 3D spectra are sufficient to achieve more than 95% accuracy
for the assignments that are classified as strong (reliable) by the algorithm. The latter
comprise the large majority (92%) of all shifts. An even higher median accuracy of 98%
can be achieved for the backbone amide groups using just two 3D spectra. Interestingly,
backbone amide group assignment works slightly better with the NOESY spectra than
with dedicated triple-resonance backbone assignment spectra. Considering that the
NOESY spectra provide a wealth of other relevant information, e.g., about the
conformation or multiple states of a protein, whereas the triple-resonance through-bond
spectra have little use beyond establishing the assignment, this renders NMR studies
more efficient in that the spectra can be used simultaneously for assignment and other
purposes.

It should be noted that AlphaFold2 provides protein structures essentially “for
free”, using only the sequence as input and without additional measurements, and that
these structures have in general a high accuracy. This extends the range of application
of structure-based assignment to most proteins. The main increase of efficiency in
protein chemical shift assignment with ARTINA is the machine learning-based, complete
automation of the entire process, starting from the uninterpreted spectra, which leaves
the NMR measurements as the main time-limiting step. Using the small sets of spectra
identified in this paper, the NMR measurements, and thus the effort and cost, for the
NMR assignment of a protein can be reduced significantly, which facilitates a wide range
of NMR studies of proteins.
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