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development of automatic diagnostic system of electromyographic discharges by
audio information and artificial intelligence
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Testing potentials of needle electromyography (needle EMG) obtained from
patients with neuromuscular diseases were databased. The classified waveforms were divided into 2
second audio Ffiles. Method 1) Audio characteristics were obtained from each audio file. Machine
learning methods was used to classify the six resting potentials. The accuracy was 90.4%. Method 2)
The same database as the method 1 was used. The audio information was transformed into
melspectrogram as image files. The images were divided into training and test data. The training
data were then trained with convolutional neural networks (CNNs). Image augmentation was useful in
that the accuracy was 100%.
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(A) #: P < 0.05; ##: < 0.01; ###: < 0.0001
1:2 (#); 1:3 (HHH); 1:6 (i), 2:3 (HiH);

2:5 (#H); 2:6 (H); 3:4/3:5/3:6 (###); 4:5 (H);
4:6 (##); 5:6 (#ith)

(B) #: P < 0.05; ##: < 0.01; ###: < 0.0001
1:2/1:3/1:4/1:5/1:6 (#H#); 2:3 (##); 2:5 (##);
3:4/3:5 (###); 3.6 (##); 4:5 (#H#), 5:6 (H#H)

Class of EMG signals
(1) Complex Repetitive Discharges; (2) endplate potentials;
(3) fasciculation potentials; (4) fibrillation/PSW;
(5) myotonic discharges;(6) noise artifact

Feature set

IS_09 (no. of
features = 384)

IS_11 (no. of
features = 4,367)

Classifier

Correct classification rate
CRD (N=72)

Endplate potentials (N = 31)
Fasciculation (N = 72)
Fibrillation/PSW (N = 89)
Myotonic discharge (N = 65)
Noise artifact (N = 60)

Gradient Boosting
Machine
0.904
0.900
0917
0.967
0.920
0.920
0.784

Gradient Boosting
Machine
0.899
0.946
0.920
0.949
0.900
0.849
0.823

90

CRD, complex repetitive discharges; PSW, positive sharp waves.
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(A) Original data; training from scratch (B) Data augmented (N=20,000; fine-tuned)
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(A) VGG16
(B) ResNet50
(C) ResNet50
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