科学研究費助成事業

今和 6 年 6 月 2 0 日現在

交付決定額(研究期間全体):(直接経費) 3.200.000円

研究成果の概要(和文): 軟X線MCD顕微鏡は軟X線ビームをフレネルゾーンプレートによって集光し、磁気円 二色性を利用して磁性体の磁区構造をナノスケールで描画できる走査型のイメージング装置である。試料表面の 微小な凹凸や微傾斜がエッジ効果を生み出し、X線吸収像の定量的な解析を妨げていた。そこで、4象限型のフォ トダイオードによる表面立体観察イメージング法を開発した。光電子の放出角度を演算的に導出することで試料 表面の微結晶のファセットや微斜面の角度をX線吸収強度と同時に検出することを試みた。この同時計測によっ て、磁石表面形状と磁区像の対応が明確になり、永久磁石材料の磁化反転過程の研究に寄与できるものと期待で きる。

研究成果の学術的意義や社会的意義 本研究は放射光磁気イメージング手法の高度化であり、永久磁石をはじめとする磁性体研究に広く展開できる。 また、表面形状や面内磁化情報を同時計測によって得られるため、X線のビームタイムの有効利用に貢献でき る。学術的には、新たな磁性体の特性解明や材料設計へのフィードバックによる短周期開発が促進され、社会的 には、エネルギー効率の向上や環境負荷の低減につながる技術革新につながることが期待される。

研究成果の概要(英文): The XMCD microscope is a scanning imaging device using a Fresnel zone plate, utilizing magnetic circular dichroism to visualize the magnetic domain of magnets at the nanoscale. Surface roughness and tilts on the small surface create edge effects that hinder the quantitative analysis of X-ray absorption images. Therefore, we developed surface topography imaging method using a 4-quadrant photodiode. By computationally deriving the take-off angles of photoelectrons, we attempted to detect the angles of microcrystal facets and tilts simultaneously with X-ray absorption intensity. This simultaneous measurement clarifies the correspondence between the magnet surface shape and the magnetic domain, promising contributions to the study of magnetization reversal processes in permanent magnet materials.

研究分野:量子ビーム

キーワード: 磁気イメージング 軟X線顕微鏡 ナノ集光 画像信号処理 X線吸収分光

1版

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1.研究開始当初の背景

最高の磁石性能を持つネオジム磁石は、HDD 磁気ヘッド用アクチュエーターなどの小型精密磁 石や、風力発電用ジェネレーターなどの大型磁石利用が盛んで、その需要は拡大の一途にある。 一方で磁石の性能の指標である保磁力や磁気ヒステリシスの角型性と結晶粒組織との関係性は 十分に明らかになっていない。近年、高輝度放射光を使った磁気イメージング装置の開発・整備 が進んだことにより、減磁過程での反転磁化領域の連鎖やバルク内部の影響に関する研究が進 んできた状況にある。実際の材料の各種特性値は不純物の影響や拡散過程の不均一性よって、理 論的に導かれるそれを大きく下回る。すなわち、減磁過程の in-situ 顕微観察は、永久磁石の高 性能化や新規材料探索のための重要なアプローチとなりえる。

磁区構造の顕微観察は、ビッター法による光学顕微鏡による観察から始まり, Kerr 効果顕微鏡 や光電子顕微鏡、磁気力顕微鏡(MFM)観察へと発展してきた。これらの手法はおよそ平坦に研磨 した材料しか有効に測定できないという難点がある。近年では放射光×線を使った走査型透過× 線顕微鏡(STXM)も登場したが、試料はサブマイクロメートル厚の薄膜に限定される。さらに、試 料を加工してしまうと大幅に保磁力低下を起こすことが知られており、バルク材料とは異なる 振る舞いを観察することになる。

この問題を解決するために、真空中で破断した凹凸を含む試料表面に放射光 X 線を照射し、試料電流から各種情報を取得できる走査型軟 X 線 MCD 顕微鏡を開発した(Y.Kotani et al, 2018)。 特定のエネルギーの X 線を照射すると、含有元素の内殻遷移に伴って試料表面から光電子が外部に放出される。このとき、電子損失を補償する微小な電流が試料に流れ込む。これを電流アン プで信号を増幅させ、試料位置情報とともに計測することで X 線吸収イメージが得られる(図1

左)。以上の方法により保磁力低下のない状態で磁区観察 が可能になった。入射光エネルギーを変えることで元素 選択イメージを、入射光のヘリシティを変化させ X 線吸 収イメージの差分を取ると磁気円二色性(<u>Magnetic</u> <u>circular dichroism: MCD)イメージを得られる(図1右)。</u> さらに、最大出力 8 テスラの超伝導マグネットを備えて おり、ネオジム磁石の着磁、減磁過程の磁区構造の変化を 初めて詳細に観察した(D. Billington et al, 2018)。

図 1. ネオジム磁石の破断面の X 線吸収像、入射光 エネルギーは Fe-ム吸収端となる 708 eV とした(左 図)。円偏光を使うことで表面の磁化が可視化でき る(右図)。 視野サイズはいずれも 60 µm×60 µm。

真空破断面の観察では、元素選択性コントラストと磁気コントラストおよび形状コントラスト が混在する。形状コントラストとは結晶粒の形状に由来する数 100 nm~数 µmのラフネスが存 在し、その凸部と凹部で光電子放出量が異なることに由来している。元素選択性コントラストと 磁気コントラストを議論するときに形状コントラスト(すなわち凹凸情報)は既知のものとして おきたい。そこで凹凸を同時計測にて測定する検出器が必要となった。さらに、絶縁性試料や電 圧効果を示す機能性材料を測定対象としたとき、試料電流を計測することはできない。この場合、 シリコンドリフトディテクタを使った蛍光収量法が検討されるが、フレネルゾーンプレートな どの集光光学系が試料に近接配置されている場合、ディテクタを設置する空間的余裕がなく、集 光光学系に干渉しない構造の検出器の開発が必要となる。

2.研究の目的

本研究では、最も試料に近い集光素子である高次光制限アパーチャ(OSA)の代わりに、光電子 または蛍光 X 線を捉えるための検出器を設け、X 線吸収イメージング法を開発する。フレネルゾ ーンプレートの透過率と回折効率の乗算は数%程度であり、これに蛍光 X 線の励起効率が乗算されて収量は高くないと予想されるが、数 10 pA の電流量があればイメージングの検出器として 代替可能となる。また、蛍光 X 線収量は試料の電位に依存しないため、試料への配線や電圧、電 流印加が可能となる。シリコンフォトダイオードをセンターホール付きの4象限素子として分 割し、それぞれのエレメントの電流値を独立して計測する。その後、演算を施し、凹凸情報に置

き換えが可能かどうかを検討する。本研究で整備する4象限検出 器の配置概略を図2に示す。入射X線はフレネルゾーンプレート で回折される。そのうち1次回折光のみが4象限検出器のセンタ ーホールを抜けることができ、試料に照射される。図2の下図で は試料側からみた4象限検出器を示している。傾斜した結晶面か らは光電子または蛍光X線が、主としてその法線方向に放出され る。

図 2. OSA 位置に設置した 4 象 限検出器

試料から放出される光電子は、運動エネルギーをもった光電子

と、エネルギーを失った二次電子から構成される。試料と検出器の間に電位差を与えることで電子の放射角が変化し、傾斜角分解能を変化させることができる。他方、蛍光 X 線の場合は引き込み電圧によらず等方的に拡散するが、試料自らの遮蔽及び吸収によって拡散方向に偏りが生じる。この差を捉えることによって試料の微視的な傾斜方向とその角度を割り出せるものと期待できる。

3.研究の方法

電子検出のための検出器の検討と製作を行った。検討の結果、マイクロチャンネルプレート (MCP)は電子増倍のための高電圧空間が必要なため厚みがあり、試料とゾーンプレート間の僅か な空隙に挿入することが困難であると考えた。フォトダイオード(PD)は MCP と比べてシンプル

な構成であり、電子と蛍光 X線の両方を検出できるメリットがある。 そこで、OSA を組み込んだ 4 象限 PD を作製した。図 3 は OSA 一体型 4 象限 PD と試料の配置の様子である。試料表面から見た立体角の 約 20%を PD が覆うことになる。

試料バイアスと外部磁場が存在する環境で、運動エネルギーを持った電子がどのような軌跡を描くのかをシミュレーションした。その結果、試料バイアスの増減によって、放出する電子線の放出角を

図 3. 高次光制限アパーチ ャと一体化させた4象限 PD

制御できることが分かった。これは角度分解能を選択できることを示唆している。一方で、外部 磁場については 0.01 テスラ以下の弱い磁場であっても、磁力線にまとわりつくような軌跡を常 に描くことが分かった。これは軟 X 線の低運動エネルギー電子では磁場方向に強く束縛され、電 子放出角の検出ができないことを示している。

放射光を使った実証実験では、ネオジム磁石を約1.0 × 0.5 ×10 mm³の棒状に加工し、これ を超高真空状態の試料準備槽にて破断し観察表面を得た。単素子型のPDを用いて集光光学系の 調整を実施した後、試料測定槽に移送、ピエゾステージ上に設置した。無磁場、室温での試料の X線吸収コントラスト像およびMCD像を取得した。入射光エネルギーはFe-L₃吸収端エネルギー である707.9 eVとした。入射光のエネルギー分解能はE/ E=3,000とした。このとき、見積も られたビームサイズは 100 nm である。MCD像は右円偏光と左円偏光でのX線吸収像の差分と して算出した。4象限 PDの各象限の信号は、4台の独立した電流アンプで増幅され計測システム によって収録された。各象限間の信号強度の差異が微結晶の傾斜角と相関がある。さまざまなサ イズや方位をもった結晶粒で検証するため、視野領域を変えながら X 線吸収コントラスト像と 同時計測でデータ収録した。さらに、感度や分解能は光電子取り込み立体角に依存する。よって、 試料と4象限フォトダイオードの距離、バイアス電圧、外部磁場に依存すると予想され、これら のパラメータを変更しながら測定した。図 4 は外部磁場とバイアス電圧を印加しないときのネ オジム磁石破断面の X 線吸収コントラスト像と4象限 PD による電子収量像である。電子収量像 ではそれぞれ各象限に向いた面が明るく描画されていることが見て取れる。なお、4象限電子収 量像の空間分解能は、X 線吸収コントラスト像と比較して同等である。

図 4. 試料電流による X 線吸収コントラスト像と4 象限 PD による電子収量像。 視野サイズはいずれも 60 µm×60 µm

4.研究成果

これらのデータの感度補正、BG 処理を施した後、微結晶の傾斜角を求めた。図 5 に示すよう に、PD のエレメントに向いている傾斜面からの信号は強く、反対向きの傾斜面の信号は弱い。

PD の方位に注意しながら積分 し、積分画像の総和を取ること で高さ方向の分布を得ることが できた。この方法では高さの絶 対値は得られないものの、微結 晶がおおむね等方的な形状と仮 定すると、2 次元図における結 晶サイズから高さの規格化が可 能である。

その結果、X線吸収像と同じ 視野領域にて高低マップを得る ことに成功した(図6)。

また、実験室系のレーザー共焦 点顕微鏡によるプロファイル計 測で得られた高低情報との比較 を行ったところ、良い一致を示 した。(図6右)。以上から、凹 凸情報に変換することで、表面 3次元モフォロジー像を構築す ることに成功したといえる。

図 5. 高低マップを得るまでのデータ処理方法の概念図。

図 6. X 線吸収像(左)と演算された高低マップ像(中央)、およびレーザー 共焦点顕微鏡による高さプロファイル図(右)。視野サイズはいずれも 60 µm×60µm。

本研究で開発した4象限検出器は放射光施設の軟 X 線 MCD 顕微鏡に設置するものであり、安 定稼働後には共用利用実験でも活用していくことを予定している。この軟 X 線 MCD 顕微鏡は 2022 年に 3GeV 高輝度放射光施設ナノテラスに移設し、2024 年から運用を開始した。同施設の高輝度 の軟 X 線ビームを利用することで、2022 年度と比較して数 10 倍以上の信号強度にて測定が可能 となることが期待される。このためのビームラインの立ち上げ、ビームラインの光軸調整、軟 X 線 MCD 顕微鏡の組立て、フレネルゾーンプレートの集光調整を実施した。さらに、磁場中では磁 性材料の表面の磁化状態が、面内磁化から面直磁化へ、あるいはその逆へと変化が起こることが 予想される。これを可視化して捉えることのできるように、外部磁場となる超伝導マグネットの 設置、アライメントおよび軟 X 線 MCD 顕微鏡との連結作業を行った。また、入射光エネルギーを 変えながら測定できるようにビームラインの分光器などと連動してデータ取得できるソフトウ ェア群も作成した。以上の取り組みによって、高輝度軟 X 線の準備および軟 X 線 MCD 顕微鏡の 立ち上げに約一年を費やしたが、本研究の微小な信号から表面形状を描き出す手法や磁化変化の僅かな信号をとらえるには軟X線MCD顕微鏡の移設は有効な選択であったと考える。今後、放射光実験を再開し、本研究手法のユーザー利用を促進し、さらなる展開を図っていく。

5.主な発表論文等

〔雑誌論文〕 計0件

〔学会発表〕 計1件(うち招待講演 0件/うち国際学会 0件) 1.発表者名

小谷佳範,鈴木基寬,中村哲也

2 . 発表標題

軟X線MCD顕微鏡による磁石表面形状と磁化分布の立体観察の試行

3 . 学会等名

日本顕微鏡学会 第64回シンポジウム

4.発表年 2021年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

_

6	研究組織

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
--	---------------------------	-----------------------	----

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関
---------	---------