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Action estimate of person in need of nursing care for which Al input is time
series variation of sound source image generated by microphones at bed sides

Nakajima, Hajime
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In_this study, with the goal of understanding the behavior of care
recipients and inpatients in bed, we used the sound source distribution image of behavioral sounds
as input to deep learning, and attempted to estimate in-bed behavior based on the time-series
changes of this sound source image. We built a behavioral sound collection system with four
microphones placed on the head and footboard to acquire behavioral sounds in bed, and used the
acquired data as input data for deep learning to generate a sound source image sequence and a log
mel-spectrogram was generated. The sound source image was generated by representing the position
inside the bed and its outer edge using a mesh, and by correlating the flight time and making
corrections based on the signal intensity ratio. As a result of acquiring behavioral sound data and
performing deep learning, we were able to confirm that it was possible to improve the accuracy of
estimating the location of getting out of bed and scratching.
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