2020 2023

Understanding plasticity of metals through proving discrete-to-continuum limits
of interacting particle systems

Understanding plasticity of metals through proving discrete-to-continuum limits
of interacting particle systems

VAN MEURS, Patrick

2,400,000

My research has contributed to the improvement of steel and other metals in
terms of their mechanical properties such as strength and durability. Improving steel is a huge
interdisciplinary field of research. Scientists who develop new types of steel rely on theoretical
guidelines to improve steel. These guidelines are usually developed by engineers. However, in the
case of steel these guidelines are difficult to develop. The main reason is that the bending of
steel is the result of many interacting microscopic processes happening inside steel. It is
therefore necessary to derive a computable description for the group behavior of these processes. My

research has advanced previous descriptions such that they are applicable to less restrictive
scenarios.
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The background and motivation are written on the previous page. However, to describe
the purpose, research methods and achievements, it is necessary to describe the
background and setting in a mathematical manner.

In the description of the background 1 mention that my research is about deriving
the group behavior of interacting microscopic processes inside steel. These
microscopic processes are so-called dislocations which move through the steel. The
easiest way to understand what dislocations are is to Google ‘ dislocations in
metal’ . Here 1 give a brief description. Metals are formed by atoms that are
stacked in an easy, regular pattern, like oranges in a box. However, in the case of
metals, this stacking contains irregularities at various positions. An important
type of such irregularities are called dislocations.

For the purpose of my research, we need to describe the movement of these
dislocations through the steel. The actual movement is very difficult to describe.
In order to make progress and to derive the group behavior, we need to use
simplified descriptions for this movement.

One of the simplified descriptions that | use in my research is illustrated in the
diagram below. The top left figure illustrates the dislocations in a squared domain
(d = 2) as circles with a plus or a minus in it. The plus or minus denotes the
orientation (or sign) of the dislocation.
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When time elapses, all dislocations will move around. This movement is described by
the formula in the top of the diagram, which is called (P,). In this description we
assign a number to each dislocation such that we can distinguish them. I use the
symbol i to denote this number. On the left of the equation is the velocity of
dislocation i. The expression on the right describes this velocity in terms of the
positions of all the other dislocations. It simply says that the velocity is given
by the sum of the forces that each other dislocation exerts on dislocation i. This
interaction force is such that dislocations of the same sign repel each other while
dislocations of opposite sign attract each other with the same force. Since (P, has
to hold for each dislocation i, it describes the movement of all dislocations.
Unfortunately, we cannot solve (P, exactly. We can solve it with a computer, but
the computation time becomes very large when the number of dislocations is large (as
is the case for steel). Therefore, the goal of my research is to approximate (P, by
a different system, which is easier to understand and for which we can compute the
solution in a reasonable amount of time. This system is (P), given in the lower part
of the diagram. It describes how the density of the positive dislocations and the
density of the negative dislocations move in time. The details of this description
do not matter for the current explanation. The two densities depend both on time and
space. Given a time point and a point in space, their value says how many
dislocations there are per unit area around the given point in space. Therefore, (P)
describes the group behavior of the dislocations; it cannot distinguish individual
dislocations anymore, but it does describe in detail how the number of dislocations
per unit area varies in time and space.




The purpose of the research is to derive rigorously the system (P) from (P,). Such a
derivation guarantees that there is precisely one system (P) which approximates (Pn)
better and better as n increases. This statement can be formulated as a mathematical
limit theorem, and the derivation of it is the proof of this theorem.

Recall that (P,) is just one possible simplified description of dislocation dynamics.
In fact, there are many different versions of (P, possible. Different descriptions
are obtained by considering a different spatial dimension, considering dynamics
versus the equilibrium states, considering dislocations with the same orientation,
considering external forces acting on the dislocations, considering the influence of
the boundary of the domain on the dislocation, including the effect of temperature,
etc.

Once (P) is obtained as the limit of a certain (P,, the next task is to try to build
further on the corresponding derivation by extending it to more complex but less
simplified version of (P,). This is how my research has progressed in this project,
where each step has resulted in one or more papers; see Section 5 below.

At the start of my project, a lot of limits from versions of (P,) to (P) had already
been obtained by other mathematicians and myself. Based on that, my research
proposal focused on the following three specific subjects:

(1) Adding collisions to (P,). Dislocations of opposite sign collide with each
other. Upon collision, they cancel each other out and vanish. With these
collisions there was no limit theorem yet.

(2) Adding the effect of the atoms and temperature to (Pn). In this description
the dislocations are not free to move in any direction, but rather hop from
one empty space in between atoms to a neighboring empty space. The
temperature variable dictates how easy and how often these jumps occur. Also
for this version of (P,) there was no limit theorem yet.

(3) Quantifying the approximation. The usual type of limit theorem does not
quantify how many particles are necessary for (P) to be a good approximation
for (Pn). Yet, the number of dislocations in steel is finite (a typical order
of magnitude is 10°), and thus we want a more precise statement which tells
us that for 10° dislocations (P) is a good approximation for (P;. Such
statement was not available yet for any version of (P,).

The main research method was to sit in my office and try to connect together a large
and complicated network of mathematical arguments which ultimately forms the proofs
of the limit theorems of my research. This requires access to books and papers on
related topics. To speed up this process and to prevent me from getting stuck 1 have
worked together with mathematicians inside and outside of Japan. Thanks to these
collaborations I have discovered much more than I would have been able to do alone.
To facilitate these collaborations | have made research visits to my collaborators
and have invited them to my home institute which is Kanazawa University.

I have also participated in various conferences, workshops and seminars in
mathematical departments of universities. Such events foster the exchange of the
latest research and trends in mathematics. It is vital for getting feedback on my
own research, but also for obtaining new ideas on the key mathematical arguments
required in my research.

Another method for figuring out whether a supposed limit theorem is true or false is
to solve (P,) and (P) on a computer. Doing this requires the development of new
numerical codes. | have recruited Master students for developing, testing and
refining these codes, which have turned into suitable Master projects for them.

I split my achievements in four topics; the three specific subjects mentioned in
Section 2 above (same numbering), and a fourth topic on unexpected results that came
along the way:
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I solved this problem with my two collaborators Prof. Peletier and Dr. Pozar
in one spatial dimension. This was a major result, because collisions happen

at infinite speed, which falls beyond the scope of the usual mathematical

theory. We obtained it by developing innovative arguments relying on some
hidden features of (P,) and (P). 1 think that this is a valuable addition to

the mathematical field on particle systems, not only for building further on

more complex versions of (P,), but also for particle systems with

applications other than steel.

Based on this paper 1 achieved two further results; one paper with Ms.c.

Apisornpanich on a numerical method for solving (P), and one paper with Dr.

Patrizi to connect (P, to a phase-field version of (P,), again in terms of a
limit theorem.

The future prospect is to complete a third paper which extends the limit
theorem to a large class of different particle interaction forces, such that
the results also apply to dislocation structures and other kinds of particle

systems.

Another future goal is to extend to two spatial dimensions. This is very
challenging, because the results above strongly rely on the one dimensional

setting, and thus new techniques have to be developed.

With collaborators Dr. Hudson and Prof. Peletier I have published a paper in
which we establish a limit theorem in this setting. Actually, this limit
theorem is quantitative in the sense described in (3) above. This is a major
result that sets the stage for several possible follow-up studies in which
(Pn) can be enriched.

There are two caveats though. First, we had to alter the interaction force
so that it does not cause infinite collision speeds. Second, we think that
our quantitative estimates are far from optimal.

Yet, | prefer to think of these caveats as future opportunities. Both can
easily be explored computationally, simply by solving (P, and (P) numerically.
However, this requires a careful setup and the development of new and
efficient codes, which is a long project in the making which comprises of
many Master projects put together.

In addition, without altering the interaction force there are recent
advances in mathematics (on chemotaxis models) which seem to give new
arguments by which a limit theorem can be proved. 1 am pursuing this
direction at the very moment.

With collaborator Prof. Kimura I found the first quantification for the
approximation of (P, by (P). Since this is the first result, we did this in
the easiest setting of (P,): single sign, one dimension, and in equilibrium.

While 1 have not found a way yet to extend this result to more complex
versions of (P,), | have obtained two new results based on the paper. The
first is a single author paper in which | solve a previously open problem in
one of my previous papers on boundary layers. The second is an improvement
on estimates in function approximation theory, which is reported in a paper
with Dr. Tanaka, who is an expert in this field.

I published 6 other papers, which are all achievements related to the
current research project. Next 1 describe these in more detail.

For subject (1) a deep understanding of singular ODEs 1is required. While
studying this I got myself involved in two other projects in this field; one
resulted in a paper with Dr. de Jong and one resulted in a paper with Prof.

Kimura and Ms.c. Yang.

When studying subject (2), 1 came in touch with the Japanese group working
on hydrodynamic limits of stochastic particle systems. | got interested,

started to collaborate with Prof. Funaki, Prof. Sethuraman and Dr. Tsunoda,

and wrote 2 papers with all three mathematicians.

The final two papers were sparked by discussions with other mathematicians
working on dislocations and disclinations (another kind of irregularity in
the stacking order of metallic atoms). The first is a single author paper on
a simple but effective manner in which the self-interaction force of a
dislocation Joop can be described. The second is in collaboration with Dr.

Cesana on the derivation of a mathematical framework in which disclinations
can be described.
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