2020 2022

GeoFlink: A real-time and highly scalable processing framework for the spatial
data streams

GeoFlink: A real-time and highly scalable processing framework for the spatial
data streams

SHAIKH, SALMAN AHMED

3,100,000

GeoFlink
GeoFlink
GeoFlink
kNN

3 1 GeoFlink
IP

Our proposed framework GeoFlink enables low-latency continuous queries (range, knn, and join)
processing over spatial data streams. The GeoFlink, being real-time spatial data processing
framework, can be used for target marketing, disaster management, autonomous driving, robots path
guidance, etc.

With the advancement in data collection technologies, there is an increase
in spatial data. Spatial data is huge and many time requires real-time processing. This project
focuses on the research and development of a scalable and real-time spatial data stream management
system GeoFlink.

GeoFlink extends Apache Flink to support spatial data types, indexes and continuous queries over
spatial data streams. To enable efficient processing of continuous queries and for the effective
data distribution across computing cluster nodes, a gird-based index is introduced. GeoFlink
supports spatial range, spatial kNN and spatial join queries on point, multi-point, line,
multi-line, polygon and multi-polygon geometry types. Extensive experimental study on real spatial
data streams proves that GeoFlink achieves significantly higher query throughput than ordinary Flink
rocessing.
Iﬁ this prgject, we published 3 conference and 1 journal papers. GeoFlink is open source and is
registered as an AIST IP.

Data Streams and Distributed Computing

GeoFlink Scalable Processing Spatial Stream Continuous Queries Spatial Indexing Range Qu
ery Knn Query Join Query

B, C—19. F—19—1, Z2—19 (tm)
1. WFEBAEE SO =

Spatial data or more specifically 2D spatial data refers to the geographical data obtained
from devices integrated with GPS sensors, including smart phones, car navigation systems,
smart watches, kids/animals tracking belts, etc. All the 2D spatial data consists of at least
two attributes, i.e., x and y geo-coordinates (also known as longitudes and latitudes). Besides
the traditional 2D spatial points, spatial data includes lines, multi-lines, polygons and multi-
polygons. Recently there is a tremendous increase in the spatial data generation due to the
increase in the use of devices with GPS sensors. With the increasing availability of the spatial
data, the demand for its processing and analysis is also increasing.

Need for Spatial Data Processing: Spatial data processing and analysis have several
applications in different domains including marketing, disaster management, autonomous
driving, military services, robotics, kids/patients/animals tracking, medical science, etc., to
name a few. In many cases, spatial data is huge and require real-time processing to avoid
heavy financial and human loss. For instance, having been able to access the precise locations
of all the humans in a disaster affected city via their smart phones, we would like to guide
them to the nearest safe location in a real-time manner to avoid possible life loss. For a big
city like Tokyo, this include continuous and real-time processing of millions of tuples/second
related to over 38 million people trajectories [1]. The existing spatial data processing
frameworks like ESRI [4] and PostGIS [5] are mainly designed for static data and not for
spatial stream processing and are not scalable to handle such a huge data in real-time. Such
a large-scale real-time computation is only possible with the help of state-of-the-art
distributed and horizontally scalable big data processing platforms like Apache Spark ,
Apache Flink , Apache Kafka , etc. However, none of these platforms is designed for spatial
data processing and hence cannot process spatial queries efficiently. These big data
processing platforms treat spatial data as ordinary text data and hence randomly distribute
incoming data to available nodes without considering the spatial proximity of the data, hence
resulting in increased querying cost. Beside these, there exist some open-source libraries and
platforms for the processing of spatial data on these scalable bigdata platforms, for instance,
a) GeoSpark [2]: a library for the spatial data processing on Apache Spark, b) ST-Hadoop [3]:
a Hadoop-based framework for the processing of very large spatial data available in Hadoop
Distributed File System, however both of them can only handle static data and does not
support real-time query processing.

Hence, to process the huge data streams in real-time, we need the power of big data platforms
which are highly distributed and horizontally scalable. However, to get the spatial data
streams processed by these platforms, spatial data structures, data types and operators need
to be implemented which is quite challenging due to the data-driven programming models of
these platforms.

Data-driven Programming: It is a programming model where the data itself controls the flow
of the program and not the program logic. Big data platforms like Apache Spark and Apache
Flink uses this style of programming, by applying a series of transformations on the data, to
support horizontal scalability.

The goal of this project is to propose data types, data structures and algorithms for the real-
time processing of huge and dynamic spatial data streams by utilizing existing big data
platforms. To avoid reinventing the wheel and to take the advantage of the existing state-of-
the-art big data stream processing engines, we propose to use the Apache Flink as the base
engine.

Key Scientific Questions:
This research will address the following key scientific questions.

1. How to represent the spatial data objects in the big data platforms for efficient
processing?

2. How to structure the dynamic spatial data streams, such that the data maintains
spatial proximity when distributed among the big data platform’s cluster nodes?

3. Which data structures must be used to obtain a throughput of millions of

tuples/second in the presence of highly dynamic data stream (i.e., with continuous
insertions and deletions)?

4. What are the different useful spatial data operators?

2. WrEO B

The purpose of this project is to be able to process highly dynamic spatial data streams
efficiently by extending one of the state-of-the-art big data streaming platforms as the base
system, which in our case is Apache Flink. This requires proposing spatial data types,
efficient and scalable spatial data structures and effective algorithms for the uniform
distribution of the dynamic data streams.

Why Apache Flink? At present, Apache Spark and Apache Flink are the two main big-data
platforms, both of which claim to support stream processing besides the traditional batch
processing. To enable stream processing, Apache Spark relies on micro-batching while
Apache Flink does not rely on such micro-batching and processes the incoming stream tuples
as soon as they arrive. In contrast to Flink streaming model, micro-batching in Spark results
in small processing delay as it groups the incoming streaming tuples to achieve higher
throughput. Since the focus of this work is the real-time processing, Flink is a natural choice
to be used as the base framework.

Scientific significance, and originality of the research project:
At the moment, there exist only one active and commonly used spatial data processing

framework, i.e., GeoSpark [2], which is based on the Apache Spark platform. It is a library
for the static spatial data processing using Apache Spark’s batch processing. Since it cannot
support real-time processing, it is not suitable for the processing and analysis of continuous
spatial data streams requiring real-time response. To support efficient query evaluation,
GeoSpark define spatial index structures on the spatial data attributes, i.e., on the x and y
coordinates (or longitude and latitude), including Grid, R-Tree and Quad-Tree [2]. The index
1s generated on the static datasets, which may be used for the efficient query processing,
however if there is any change in the dataset, the index needs to be regenerated as in the
data-flow programming model, we cannot modify part of the index. This indexing does not
only support query processing but also helps in the uniform data distribution of the spatial
data by keeping in view the spatial proximity to reduce the data shuffling among the cluster
nodes. However, in case of data streams, we cannot take the advantage of the similar data
indexing and data partitioning as the data arrives continuously and we have no prior
information of the data distribution. Besides, index creation is a costly operation and cannot
serve the purpose in case of dynamic data streams.

Hence, we need some data structures, which do not need to be physically updated as the new
data arrives, or the old data expires. Instead, based on the spatial attributes, the incoming
data must be hashed as it arrives to the appropriate cluster node(s) to preserve the spatial
data proximity. For instance, if we have four cluster nodes, hence we would like to divide the
incoming stream tuples in four groups, such that the tuples in each group preserve the spatial
proximity. Each group is then hashed to one cluster node, to minimize the data shuffling
during query processing and hence can improve the overall throughput. For this sake, logical
grid-indexing could be useful, as most of the spatial data queries involve the computation of
nearest neighbors within certain distance of the queried point, and grid-indexing preserves
the spatial proximity for the 2D spatial data.

3. WHEDTTIE

This work will elucidate the following to address the key scientific questions above:
1. Since the big-data platforms including the Apache Flink, does not natively support
spatial data types or objects, we will define a spatial data layer for Flink, so that it
can support different spatial data types including Point, Lines, Polygons, etc.

2. The next and the most important challenge is to hash]
(logical index) the incoming spatial data stream in such a
way that the data maintains spatial proximity when (q
distributed among the big data cluster nodes. This could be \ L
achieved by utilizing the grid structure, like the one shown g
in Fig. 1, where each grid cell has length / Each incoming
stream tuple is assigned a unique grid cell id based on its
location coordinates and the tuples belonging to the near-by -
cells are hashed to the same cluster node. Given the query l
point g, and cell length / we can easily identify the number Figure 1 Grid Structure
of spatial objects that lie within certain distance d of ¢
without computing the distance between g and the dataset
points. For instance, in Fig. 1, assuming that blue circle denotes the boundary of d
from g, then the objects in cells within red boundary or layer L; of cell containing ¢
are guaranteed to be within distance d of q. Layer Li(q) can be defined as follows:

Ll(Q) = {Cu,vlu =X i 1'17 = y i 1! Cu,v * Cx,y}
Similarly, we can identify the points which lie greater than distance dof g (cells outside green
boundary), hence the distance computation needs to be done only for the cells in green
boundary and excluding the red boundary. This could be helpful in the efficient nearest
neighbors’ search queries which is the basis of majority of spatial queries.

3. The nearest neighbor search is more challenging in case of spatial objects of type
line and polygon, where an object may lie in more than one cell grid or even in more
than one cluster node. Hence, we plan to extend the idea presented above for these
spatial objects and devise algorithms for it.

4. Another important contribution of this work is the identification and definition of
different spatial operators. Since the operations like overlap, intersect, etc. are
specific to spatial objects, hence they need to be defined in Apache Flink following
the data-driven programming which is another challenge.

N~]

Ly

4. WFFERR

The main outcome of this project is GeoFlink aueny[&<—Output
(Figure 2 shows GeoFlink Architecture), which U

is a scalable and distributed framework for the Y et

real-time spatial data stream management _l Java/Scala API] [Sink
and processing. ‘L T

GeoFlink extends Apache Flink to support Real-time Spatial Query Processing Layer

spatial data types, indexes and continuous

queries over spatial data streams. To enable | Range | | KNN | | Join |
efficient processing of continuous queries and - ' t '

for the effective data distribution across pE N
computing cluster nodes, a gird-based index is Spatial Stream Layer
introduced. GeoFlink supports spatial range, | Grid-based Spatial Stream Distribution |
spatial kNN and spatial join queries on point,

multi-point, line, multi-line, polygon and | Grid-based Spatial Index |

multi-polygon geometry types. Extensive >
experimental study on real spatial data
streams proves that GeoFlink achieves
significantly higher query throughput than

ordinary Flink processing. |

Spatial Stream | Point, Polygon, Line String

Spatial Library |

In this project, we could publish 3 conference Figure 2 GeoFlink Architecture
[6][7][9] and 1 journal [8] papers. The complete

framework is available on Github as an open

source [10] and is registered as an AIST intellectual property.

References:

[1]
[2]

[3]

[4]
[5]
(6]

(7]

(8]

[9]

United Nations, "The World's Cities in 2016", March 12, 2017.

Jia Yu, Zongsi Zhang, Mohamed Sarwat, "Spatial Data Management in Apache Spark: The
GeoSpark Perspective and Beyond", Geoinformatica Journal, 23. 10.1007/s10707-018-0330-9,
2018.

Louai AlarabiEmail authorMohamed F. MokbelMashaal Musleh, “ST-Hadoop: a MapReduce
framework for spatio-temporal data”, Geoinformatica Journal, Volume 22, Issue 4, pp 785-813,
2018

ESRI, https://www.esri.com/en-us/home, accessed October 23, 2019

PostGIS, https://postgis.net/, accessed October 23, 2019

Salman Ahmed Shaikh, Hiroyuki Kitagawa, Akiyoshi Matono, and Kyoung-Sook Kim, A
Framework for Real-time and Scalable Trajectory Stream Processing and Analysis, ACM
SIGSPATTAL 2022, Seattle, Washington.

Masaya Yamada, Hiroyuki Kitagawa, Salman Ahmed Shaikh, Toshiyuki Amagasa, and Akiyoshi
Matono, Streaming Augmented Lineage: Traceability of Complex Stream Data Analysis,
11WAS2022.

Salman Ahmed Shaikh, Hiroyuki Kitagawa, Akiyoshi Matono, Komal Mariam and Kyoung-sook
Kim, GeoFlink: An Efficient and Scalable Spatial Data Stream Management System, in IEEE
Access, vol. 10, pp. 24909-24935, 2022, doi: 10.1109/ACCESS.2022.3154063.

Salman Ahmed Shaikh, Hiroyuki Kitagawa, Akiyoshi Matono, and Kyoung-Sook Kim, A
Framework for Real-time and Scalable Trajectory Stream Processing and Analysis, ACM
SIGSPATIAL 2022, Seattle, Washington

[10] https://github.com/aistairc/Spatial Flink

https://www.esri.com/en-us/home
https://postgis.net/
https://github.com/aistairc/SpatialFlink

Salman Ahmed Shaikh, Hiroyuki Kitagawa, Akiyoshi Matono, Komal Mariam, Kyoung-Sook Kim 10

GeoFlink: An Efficient and Scalable Spatial Data Stream Management System 2022

IEEE Access 24909-24935
DOI

10.1109/ACCESS.2022.3154063

3 0 3

Salman Ahmed Shaikh, Komal Mariam, Hiroyuki Kitagawa and Kyoung-Sook Kim

GeoFlink: A Distributed and Scalable Framework for the Real-time Processing of Spatial Streams

CIKM "20 Proceedings of the 29th ACM International Conference on Information & Knowledge Management

2020

Masaya Yamada, Hiroyuki Kitagawa, Salman Ahmed Shaikh, Toshiyuki Amagasa, and Akiyoshi Matono

Streaming Augmented Lineage: Traceability of Complex Stream Data Analysis

11WAS2022

2022

Salman Ahmed Shaikh, Hiroyuki Kitagawa, Akiyoshi Matono, and Kyoung-Sook Kim

A Framework for Real-time and Scalable Trajectory Stream Processing and Analysis

ACM SIGSPATIAL 2022

2022

