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Development of Next-Generation Machine Intelligence for Predicting Material
Properties, Considering the Influence of Experimental Processes and Sample
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In this study, we analyzed the relationships among process, structure, and
physical properties and created our own large dataset. The process information in this study was
collected by extracting text from PDFs of research papers. To analyze the relationship between
structural information and physical properties, a machine learning model was constructed using X-ray

diffraction patterns as input and crystal systems, volume, density, and volume modulus as learning
targets. The original large dataset created during this research period has been publicly released
on Figshare. The findings of this research were also disseminated externally through various means,
including submissions to domestic and international conferences and journals.
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