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Unsupervised anomaly detection in functional and anatomical image pairs by
Bayesian deep learning
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In this study, we proposed a_general-purpose computer-aided detection method
for PET/CT and other pairs of functional and anatomical images. This method does not require images
with lesions for learning and can detect any kind of abnormalities. We evaluated its performance

using chest PET/CT images from our hospital and demonstrated that our model trained only with normal
PET/CT images can detect various types of lesions. The research results were published in the
peer-reviewed English academic journal Japanese Journal of Radiology.
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