2020 2021

Development of Data-driven Prediction Model using 3D Multimodal Deep Neural
Networks for Estimating the Evolution of White Matter Hyperintensities
Associated with Small Vessel Disease in Brain MRI

Development of Data-driven Prediction Model using 3D Multimodal Deep Neural
Networks for Estimating the Evolution of White Matter Hyperintensities
Associated with Small Vessel Disease in Brain MRI

Rachmadi, Muhammad Febrian

2,200,000

White matter hyperintensities WMH WMH
T2-FLAIR MRI
WWH
WMH WMH
WMH

In aging society like Japan, it is important for physicians to be able to predict the progression of
neurodegenerative diseases such as dementia and Alzheimer™s diseases. With our proposed model,
physicians can perform patient specific treatment for dementia patient.

White matter hyperintensities (WMHs) and their evolution over time are the
focus of this research. WMHs are neuroradiological features seen in T2-FLAIR brain MRI and
associated with stroke and dementia. Clinical studies indicate that the volume of WMHs on a patient
may decrease (i.e., regress), stay the same, or increase (i.e., progress) over time.

In this project, we successfully developed a more accurate predictive model for WMHs evolution using
deep learning by performing joint prediction of WMHs evolution and stroke lesions segmentation.
Furthermore, auxiliary input of stroke lesions probability maps also improved the performance of our
model. These findings are important because (1) they confirmed previous clinical studies which
elucidated that is as strong correlation between WMHs evolution and stroke lesions and (2) more
accurate prediction of WMHs evolution can help physicians to create patient specific treatment for
dementia patient.
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1. WFFERIIR YY) DT 5 (Background & Key Issues)

(1) Previous studies have shown that the volume & shape of White Matter Hyperintensities
(WMHs) on a patient may decrease, stay unchanged, or increase over time (i.e., evolution of

WMH).

(2) WMHs are associated with dementia, Alzheimer’s Disease (AD), stroke, and multiple sclerosis

(MS).

(3) Predicting the evolution of WMHs is challenging because:
@. the rate of WMH evolution varies across studies and patients,

(2. it involves a high degree of uncertainty, and

3. influencing clinical factors are poorly understood.

2. %D HIY (Main Objective)

(1) Predicting Disease Evolution Map (DEM) for the WMHs by using neural networks.
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3. e D7 (Research Method)

(1) Probabilistic U-Net with Adversarial Training was proposed to capture uncertainties in the
prediction process of WMHSs evolution. Unlike deterministic model, this model can produce

multiple predictions of DEM (see figures below).
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(2) Volume Interval Estimation

We argue that it is better to perform our proposed evaluation approach called Volume
Interval Estimation (VIE), where not only it estimates the future volume of WMHs (VPE), but
also it estimates the minimum volume of future WMHs (MinVE) and the maximum volume of
future WMHSs (MaxVE). We do this by Dropping prediction channels of growing WMHs for
MinVE and shrinking WMHSs for MaxVE (see figures below)
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4. fRFFERER (Results)

(1) U-Net vs. Probabilistic U-Net
Table 1 shows the performances of U-Net and Probabilistic U-Net for predicting the spatial progression
of WMHSs (shown in Dice Similarity Coefficient (DSC)) and in volume point estimation (VPE). Following
the original paper that proposed the Probabilistic U-Net, we first used T2-FLAIR at first assessment (t0)
and true DEM as inputs to Posterior Net. However, this approach was outperformed by the U-Net
model. By, consequently, changing the input of Posterior Net to be T2-FLAIR at second assessment (t1)
and true DEM, the model using Probabilistic U-Net outperformed U-Net in our experiments. These show
that the input data for the Posterior Net in the Probabilistic U-Net should differ from the input data for
the other modules of this probabilistic architecture (i.e., U-Net and Prior Net). Table 2 also shows that
the Focal Loss (FL) cost function produced better prediction results than the weighted cross entropy
(WCE) in both DSC and VPE for all experimental settings.

Table 1. Results for U-Net vs. Probabilistic U-Net

Model Cost DsC t VPE
function
Shrink Grow Stable Average Error — 0 MSE |
U-MNet WCE 0.1794 0.1970 0.6413 0.3393 -2.7127 112.87
(0.072) (0.097) (0.159) (0.078) (10.31) (247.44)
FL 0.1757 0.2073 0.6433 0.3438 -2.7002 108.17
(0.077) (0.104) (0.156) (0.076) (10.08) (256.61)
Prob. U-Net (t0 & DEM as inputs WCE 0.1491 0.1524 0.6220 0.3079 -2.5095 102.44
to Posterior Net) (0.061) (0.090) 0.171) (0.086) (9.84) (234.61)
FL 0.1673 0.1858 0.6147 03226 -2.0297 89.56
(0.074) (0.089) (0.184) (0.090) (9.27) (220.73)
Prob. U-Net (t1 & DEM as inputs WCE 0.1964 0.2040 0.6564 0.3522 -0.2953 69.05
to Posterior Net) (0.071) (0.091) (0.162) (0.080) (8.33) (224.94)
FL 0.2092 0.2056 0.6507 0.3552 -0.6650 64.33
(0.082) (0.092) (0.160) (0.080) (8.02) (220.39)

(2) Probabilistic U-Net with Adversarial Training
We investigated whether applying adversarial training with different input images can improve the
performance of Probability U-Net. Table 2 shows that adversarial training with T2-FLAIR at t0 and true
DEM slightly improved the prediction produced by Probabilistic U-Net in VPE (Error) and DSC (Stable).
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Table 2. Results for Probabilistic U-Net with Adversarial Training

Model DSC 1 VPE
Shrink Grow Stable Average Error — 0 MSE |
Prob. U-Net (t1 & DEM for Posterior Net) 0.2092 0.2056 0.650 0.3552 -0.6650 64.33
(0.082) (0.092) (0.16 (0.080) (8.02) (220.39)
Prob. U-Net (t1 & DEM for Posterior Net) + 0.1739 0.2083 0.6374 0.3399 20216 (9.32) 9034
DEM GAN (0.083) (0.103) (0.172) (0.090) (180.32)
Prob. U-Net (t1 & DEM for Posterior Net) + 0.1911 0.2184 0.6530 0.3541 0.3155 78.83
t0-DEM GAN (0.093) (0.103) (0.163) (0.089) (8.90) (156.17)
Prob. U-Net (t1 & DEM for Posterior Net) + 0.1737 0.2367 0.6427 0.3511 —-3.4385 91.70
t1-DEM GAN (0.083) (0.100) (0.169) (0.086) (8.97) (205.29)
Prob. U-Net (t1 & DEM for Posterior Net) + 0.1701 0.2282 0.6425 0.3469 -3.3115 858.36
t0-t1-DEM GAN (0.083) (0.102) (0.167) (0.083) (8.83) (220.39)
U-Net 0.1757 0.2073 0.6483 0.3438 -2.7002 108.17
(0.077) (0.104) (0.156) (0.076) (10.08) (256.61)
U-MNet + t0-DEM GAN 0.1849 0.2134 0.6468 0.3484 -1.1187 59244
(0.091) (0.099) (0.159) (0.079) (9.58) (191.44)

Figure below also shows that the predicted DEM produced by adversarial training more closely followed
the true DEM by removing the small false positive clusters in the prediction results. These experiments

show that, while Probabilistic U-Net without
adversarial training consistently produced some
of the best prediction results in terms of DSC, the
Probabilistic U-Net with adversarial training
predicted more realistic DEM, closer to the true
DEM, and with better VPE values. Additionally,
U-Net with adversarial training produced better

prediction results than the original U-Net

without adversarial training.

(3) Volume Interval Estimation

True DEM

Prob. U-Net (11 & DEM
for Posterior Net)

Posterior Net) + t0-t1-DEM GAN

Prob. U-Net (t1 & DEM for

Comparison of the true DEM (left) and predicted DEMSs produced by using

Probabilistic U-Net without adversarial training (middle) and Probabilistic U-

Net with adversarial training with T2-FLAIR at to and true DEM (right).

Table 3. Results for Probabilistic U-Net by using Volume Interval Estimation

Model CP 1 CPIinEVlI  (CP+WP)inEVI Distance to VPE (in mli)
T MaxVE — 0 MinVE — 0

Prob. U-Net (t1 & DEM for Posterior Net) 73.03% 44.74% 51.32% 4.0862 (3.241) | —5.5700 (3.918)

Prob. U-Net (t1 & DEM for for Posterior Net) + DEM GAN 63.16%  30.26% 39.47% 2.5377 —-5.5978
(3.0779) (4.5046)

Prob. U-Net (t1 & DEM for for Posterior Net) + t0-DEM GAN | 69.74% | 39.47% 50.00% 2.6563 -6.7103
(3.0834) (5.4319)

Prob. U-Net (t1 & DEM for for Posterior Net) + t1-DEM GAN | 68.42% | 44.74% 57.24% 2.84599 -7.9550
(2.7111) (5.3201)

Prob. U-Net (t1 & DEM for for Posterior Net) + t0-t1-DEM 73.03% 48.68% 57.89% 2.9383 -7.6224

GAN (3.0793) (5.5935)

U-Net 61.84% 36.84% 48.68% 2.9911 -6.1355 (4.5706)
(3.3676)

U-Net + t0-DEM GAN 72.37% 46.71% 59.87% 4.5915 -6.2326
(6.7208) (4.7695)
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Table 3 shows the performances of the deep learning models evaluated using VIE. The percentage of
patients with correctly predicted DEM (i.e., subjects with shrinking and growing WMHs correctly
predicted as having shrinking and growing WMHs respectively) is given by the metric called “CP”
(Correctly Predicted). We also calculated the percentage of patients having their true future volumes of
WMHs (Tt1V) correctly estimated and located between MinVE and MaxVE, and expresses it under a
metric named “CPinEVI” (Correctly predicted in Estimated Volume Interval (EVI)). Lastly, “(CP+WP)inEVI”
shows the percentage of correctly and wrongly predicted patients with their Tt1V still located between
MinVE and MaxVE.

Both “CPinEVI” and “(CP+WP)inEVI” are important for better interpretation and higher confidence in our
predictive model. Metric “CPinEVI” is important not only in evaluation but also in real-word
testing/inference. A predictive model with higher rate of “CPinEVI” in testing means that there is a high
probability that the Tt1V lies between the predicted/estimated MinVE and MaxVE produced by the
predictive model. On the other hand, “(CP+WP)inEVI” captures difficult cases where the future volume
of WMHs is wrongly predicted by the predictive model but the Tt1V still lies between the
predicted/estimated MinVE and MaxVE. These cases happen mostly when the WMHSs volume change
from t0 to t1 is very small. For example, a patient with WMHs volume of 5 ml at t0 and 5.5 ml at t1 (i.e.,
growing WMHs) is wrongly predicted by the model to have future WMHSs volume of 4.5 ml (i.e.,
shrinkage in the total WMHs volume at t1) while having predicted MinVE and MaxVE of 4 ml and 6 ml
respectively.

The results in Table 3, show that Probability U-Net with adversarial training using T2-FLAIR for t0, t1, and
true DEM produced the best results in all metrics of VIE. While the rate of CP is the same with the
Probabilistic U-Net without adversarial training, Probabilistic U-Net with adversarial training using T2-
FLAIR for t0, t1, and true DEM produced better results than other probabilistic models in “CPinEVI” and
“(CP+WP)inEVI” (48.68% and 57.89% respectively). It is worth to mention that the best result for
“(CP+WP)inEVI” was produced by the U-Net with adversarial training using T2-FLAIR for t0 and true DEM
(i.e., 59.87% respectively). However, as shown in Table 2, it did not outperform any Probabilistic U-Net
settings in DSC and/or VPE.

Lastly, one can argue that higher rates of “CPinEVI” and “(CP+WP)inEVI” can be produced by expanding
the VIE itself (i.e., smaller value of MinVE and larger value of MaxVE). However, as shown in Table 3, the
predicted values of MinVE and MaxVE from different predictive models are relatively close to the
predicted VPE in all settings (calculated by performing MinVE - VPE and MaxVE - VPE for the whole
dataset).
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