科学研究費助成事業(科学研究費補助金)研究成果報告書

平成24年5月29日現在

機関番号: 12501
研究種目: 基盤研究(B)
研究期間: 2009~2011
課題番号: 21360047
研究課題名(和文) 圧電ファイバン金属複合材料をベースにした革新的機械材料システム創製
研究課題名(英文) Development of innovative mechanical material systems based on
piezoelectric fiber/metal matrix composites
研究代表者
浅沼 博(ASANUMA HIROSHI)
国立大学法人千葉大学・大学院工学研究科・教授
研究者番号:40167888

研究成果の概要(和文): 金属コア圧電ファイバ/アルミニウム複合材料をベースにした画期 的な高性能圧電センサ・アクチュエータデバイスの創製, さらにはそれ自身を構造材料として 利用する革新的圧電機械材料システムの創製を検討し, それらの優れた特性を明らかにした.

研究成果の概要(英文): High performance piezoelectric sensor/actuator devices and innovative piezoelectric mechanical material systems have been successfully developed by using metal-core piezoelectric fiber/aluminum composites, and their performances were clearly characterized.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2009年度	8, 700, 000	2, 610, 000	11, 310, 000
2010年度	3, 000, 000	900, 000	3, 900, 000
2011年度	2, 300, 000	690, 000	2, 990, 000
総計	14, 000, 000	4, 200, 000	18, 200, 000

研究分野: 工学

科研費の分科・細目: 機械工学 ・ 機械材料・材料力学 キーワード: (A) 材料設計・プロセス・物性・評価

1. 研究開始当初の背景

独創的「界面層形成・接合法」により創製 に成功し機械的性質にも優れる白金コアチタ ン酸ジルコン酸鉛 (PZT) 圧電ファイバ/アル ミニウム複合材料をベースにした画期的圧電 センサ・アクチュエータデバイス・システム の構築を目指し,その達成のための要素とな る各種特性を明確にする必要性があった.

2.研究の目的

本研究においては、圧電ファイバ/金属基 複合材料を基にしたスマート機械材料シス テムを創製するため、以下の3項目を明確化 することを目的とした. (1)圧縮残留応力の影響 (2)各種応用化に向けた特性評価 (3)粘度センサとしての特性評価

3.研究の方法

(1) 圧縮残留応力の影響

①圧縮残留応力が出力電圧に及ぼす影響

作製した試料の残留応力を,熱処理温度(T_h) 423,473 および 523 K における熱処理により 緩和し,出力電圧を図 1,2 に示す振動試験 および衝撃試験で評価した.振動試験は一端 を固定したアルミニウム板に試料を接着し, アルミニウム板を電磁加振させ,試料から発 生する出力電圧をオシロスコープを用いて 測定した.衝撃試験は,試料を接着した面が 下向きになるようにアルミニウム板を自由 支持し,その中央部にステンレス鋼製ボルト を高さ h_iの位置から自由落下させて衝撃を 与え、試料から発生する出力電圧をオシロス コープを用いて測定した.また、試料表面お よびアルミニウム板表面にひずみゲージを 貼り付け、両者のひずみを測定することで試 料内部の繊維に生じるひずみを求めた.

②圧縮残留応力が残留分極に及ぼす影響

圧電特性に及ぼす圧縮残留応力の影響に ついて検討するため、試料の金属コアとアル ミニウムマトリックスの間に交流電圧 V を印 加し、その時に発生した電荷量 Q を測定, Q-V ヒステリシスループを求め、圧電特性の評価 を行った.誘電体の特性評価には、強誘電体 特性評価システムを用いた.測定条件は、圧 電ファイバの形状・寸法より、電極面積 7.85 mm²、PZT 層厚さ 0.075 mm とした.印加電圧 は、50 V から 250 V まで 50 V 毎に変化させ た.熱処理による圧縮残留応力の緩和は、上 記試験と同様に行い、圧電特性の評価を行っ た.

(2)各種応用に向けた特性評価

①高ひずみ領域での出力電圧特性

(1)-①項と同様の衝撃試験システムを用 い,高ひずみ領域における出力電圧特性を 評価した.

②エネルギー回収のための出力電力特性 試料から得られる電力は、それを取り出す 回路によって変化する.一般に外部抵抗値 (検出器のインピーダンス)を高くすると得られる出力電圧は大きくなるが、その分電流

が小さくなるため,試料から最も効率良く電 力を得るには,外部抵抗値の最適化を行う必 要がある.そこで,振動試験において,可変 抵抗器の抵抗値を変化させることで出力電 力に及ぼす外部抵抗の影響を調べた.また,

図1 振動試験装置

図2 衝撃試験装置

出力電力の外部抵抗依存性の評価と同様の 試験システムを用い,振動板の振幅を変化さ せることで出力電力に及ぼす圧電ファイバ のひずみの影響を調べた.さらに,出力電力 の周波数依存性を図3に示す圧縮振動試験に て調査した.振動板を用いて各周波数によって る出力電力を測定する場合,周波数によって 振動板の振動モードが変化し,試料に与える ひずみを一定とすることができないため,出 力電力の周波数依存性を正しく評価するこ とができない.そこで,市販の積層型圧電ア クチュエータを用い,試料の繊維軸方向に一 定のひずみを与えた際の周波数を変化させ ることで,出力電力に及ぼす周波数の影響を 調べた.

③分布型センサとしての特性評価

ピッチ1mmで5本の圧電ファイバが埋め 込まれた繊維複数本埋め試料(図4)を用い, 作用点の位置を変化させながら衝撃荷重を 与えることで,本試料の分布型センサとして の特性評価を行った.本衝撃試験の測定シス テムを図5に示す.試料に負荷する衝撃荷重 の方向は,同図に示す*x*,*y*,*z*の3方向とし, 各衝撃方向における圧電ファイバから発生 する出力電圧を測定した.

(3)粘度センサとしての特性評価 ①アクティブ型センサの特性評価

圧電ファイバを2本利用した粘度測定方法 をアクティブ型粘度測定とし、粘度測定の評 価試験を行った.アクティブ型粘度測定は試 料を図6のように加工後,複合化した2本の 圧電ファイバを利用することで、中央に配置 した圧電ファイバを用いて試料を振動させ、 もう一方の圧電ファイバからの出力電圧を 読み取ることにより試料の共振周波数およ び最大出力電圧と粘度の関係を測定する方 式である.測定用の溶液は、粘度測定用のモ デル溶液として一般的なグリセリン水溶液 および純水を用いた.試験システムを図7に 示す.

②パッシブ型センサの特性評価

パッシブ型粘度測定は複合化した中央の 圧電ファイバを用いて,外部から加わった振 動エネルギーを利用し,試料を共振周波数で 振動させ,その出力電圧を測定し,共振周波 数と粘度の関係を求める方式である.本試料 の中央に配置した圧電ファイバを用いて,外 部から得られる振動エネルギーを利用し試 料を振動させ,得られる出力電圧から共振周 波数と粘度の関係を調べた.アクティブ型粘 度測定試験と同様に粘度測定の評価を行っ た.

- 4. 研究成果
- (1) 圧縮残留応力の影響

① 圧縮残留応力が出力電圧に及ぼす影響 熱処理温度 T₄を 423, 473 および 523 K と

変化させ熱処理を行った各試料と未熱処理 の試料について,振動試験により印加した 最大ひずみとその時に発生した出力電圧の 関係を図8に示す.同図より,熱処理を行っ て残留応力を緩和した試料においては,得ら れる出力電圧はひずみとの比例関係を保ち

図5 衝撃試験装置

図6 アクティブ型粘度測定試験片

図7 粘度測定装置

ながら増加することがわかり,その増加は, 熱処理温度を高め,残留応力をより緩和させ た場合において,促進されるという傾向を示 している.また,圧縮残留応力を緩和した試 料においても,加えたひずみと圧電ファイバ から発生する出力電圧には周期のずれが生 じていないことがわかり,応答性の低下は確 認されず,センサ性能の低下はないと考えら れる.衝撃試験の結果も,振動試験と同様の 傾向を示している.

② 圧縮残留応力が残留分極に及ぼす影響

熱処理温度 T_hを 423,473 および 523 K と変化させ,熱処理を行った各試料と未熱処理 試料の P-E ヒステリシスループを測定した結 果,熱処理を行うことで,各電圧を印加した 場合に圧電ファイバから発生する電荷は減 少することがわかった.これは圧電セラミッ クスが熱処理により熱疲労を起こしたこと によると考えられる.

(2)各種応用に向けた特性評価 ①高ひずみ領域での出力電圧特性

図9に示すように、圧電ファイバ単体の破 断ひずみ(0.14~0.17%)を超える高ひずみ 領域(0.2%)まで出力電圧がひずみに対し 線形に増加することが明らかになり、高ひず み領域でも正常に機能することが確認され た.これは、試料作製時に導入される高い圧 縮残留応力により破断ひずみが向上してい るためである.

②エネルギー回収のための出力電力特性

図10に出力電力のひずみ依存性を示す. 同図より、出力電力はひずみの2乗に比例することがわかる.これは、ひずみエネルギーがひずみの2乗に比例することとよく一致している.また、本実験範囲では最大電力0.64 µWであるが、これは印加ひずみが小さいためであり、現在確認された最大使用範囲の0.2%までひずみを印加すると0.2mWの電

図 11 出力電力の周波数依存性

力が得られることが期待できる.外部抵抗依 存性については、外部抵抗 RE=4.4MΩの時イ ンピーダンス整合が取れ、最大電力が得られ ることがわかった.さらに、図 11 に出力電 力の周波数依存性を示す.同図より、出力電 力は周波数の増加に伴い線形に増加する結 果が得られた.これは、ひずみ一定の際に周 波数が増加すると1秒当たりの変形回数が線 形に増加し、1 回変形して得られる電力は変 わらないため、結果として出力電力と周波数 が比例すると考えられる.

図 12 衝撃位置による出力電圧への影響

③分布型センサとしての特性評価

図 12 に、衝撃位置 x=0 mm において y 軸方 向に衝撃を印加した際の各圧電ファイバか らの出力電圧波形を示す.衝撃位置からの距 離が増加するほど圧電ファイバからの出力 電圧が低下していることがわかる.この結果 より、圧電ファイバを複数本複合化した試料 が分布型ひずみセンサとして機能すること が明らかとなり、衝撃位置のモニタリングな どに応用が可能であると考えられる.

(3)粘度センサとしての特性評価 ①アクティブ型センサの特性評価

グリセリン水溶液の静粘度と試料の共振 周波数および最大出力電圧との関係をまと めた結果を図 13 に示す.同図より,測定す るグリセリン水溶液の濃度が高くなるに従い,本デバイスから得られる出力電圧は小さ くなることが分かる.また同時に,最大出力 電圧が発生する時の周波数は低い方にシフ トすることが分かる.

②パッシブ型センサの特性評価

図 14 に、パッシブ型粘度測定によるグリ セリン水溶液の静粘度と出力電圧から求ま る共振周波数の関係を示す. 同図より, 共振 周波数は、グリセリン水溶液の粘度が大きく なるに従い低くなることがわかる.粘度測定 に関してアクティブ型粘度測定と比較する と,同じ粘度測定範囲においては,共振周波 数の変化幅はアクティブ型粘度測定におい て 470~510 Hz, パッシブ型粘度測定におい て 466~505 Hz であり,変化の度合いに差は 生じなかった.しかし、アクティブ型粘度測 定においてはグリセリン水溶液の濃度が 80 ~85 %である静粘度 42.2~70.7 Pa・s・kg/m³ の高粘度域における測定が可能であるが、 方,パッシブ型粘度測定では不可能である. これは、圧電ファイバによって任意の周波数 の振動を発生させ、その出力電圧を読み取る ことが可能なアクティブ型粘度測定に対し,

図 13 アクティブ型センサのグリセリン溶液 中での静粘度と共振周波数の関係

図 14 パッシブ型センサのグリセリン溶液中 での静粘度と共振周波数の関係

パッシブ型粘度測定システムでは、外部から の与えられた振動エネルギーにより多様な 周波数の振動がセンサに加えられることが 原因している.即ち,センサの共振周波数以 外の振動数の振動は減衰が早いため、減衰波 の中から共振周波数を読み取ることができ るが、測定溶液の静粘度が高い場合は、共振 周波数においても測定水溶液から受ける減 衰の影響が大きく,出力電圧の減衰が大きい ことが原因であると考えられる. 上記より, 本センサの共振周波数および最大出力電圧 は、グリセリン水溶液の粘度の増加に従い、 単調に減少するため、粘度センサとしての利 用が可能である.また,高粘度領域を測定す る場合は、共振周波数の変化を利用すること で、より測定精度の高い測定が可能である. 低粘度域においては外部からのエネルギー を利用した,より簡便な粘度測定も可能であ る.

5. 主な発表論文等 (研究代表者,研究分担者に下線)

〔雑誌論文〕(計4件)

- S. Kishimoto, H. Asanuma, Y. Tanaka and Y. Kagawa, Measurement of strain distribution in smart materials by electron Moiré method, Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, 査読有, SPIE Vol. 8341, 834152, 2012, 1-9.
- ② M. Richeson, U. Erturun, R. Waxman, K. Mossi, J. Kunikata and <u>H. Asanuma</u>, Characterization of a Pt-core PZT fiber/Al matrix composite, Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, 査読有, SPIE Vol. 7644, 764429, 2010, 1-11.

〔学会発表〕(計19件)

- ① <u>H. Asanuma</u>, Development of smart mechanical material systems, 2011 MRS International Materials Research Congress, August 17, 2011, CasaMagna Marriott Cancun Resort (Cancun, Mexico).
- ② R. Matthew, E. Ugur, W. Rachel, M. Karla, T. Suzuki, J. Kunikata, <u>H. Asanuma</u>, Characterization of a Pt-core PZT Fiber/Al matrix composite, 日本機 械学会 2010 年度年次大会, 2010 年 9 月 8 日名古屋工業大学(名古屋市).
- ③ <u>H. Asanuma</u>, J. Kunikata, T. Suzuki, Fabrication of aluminum-based multifunctional material systems by the IF/B method, ASME SMASIS 2009, September 22, 2009, Embassy Suites Mandalay Beach Resort (Oxnard, USA).

6. 研究組織

(1)研究代表者 浅沼 博(ASANUMA HIROSHI) 国立大学法人 千葉大学・大学院工学研究 科・教授 研究者番号:40167888
(2)研究分担者 岸本 哲(KISHIMOTO SATOSHI) 独立行政法人 物質・材料研究機構・コー ティング・複合材料センター・主任研究員 研究者番号:10354169