

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成25年 5月31日現在

機関番号:53701 研究種目:基盤研究(C) 研究期間:2009 ~ 2012 課題番号:21510200 研究課題名(和文)非対称断面グレーティングファイバによる曲げ方向検出可能な斜面崩壊防 止センサの開発

研究課題名(英文) Development of grating fiber sensor with asymmetrical cross section detectable the bending direction for prevention of slope failures

研究代表者 熊崎 裕教(KUMAZAKI HIRONORI) 岐阜工業高等専門学校・電気情報工学科・教授 研究者番号:70270262

研究成果の概要(和文):微細加工したグレーティングファイバを用いて、斜面崩壊防止用セン サとして評価した。反射中心波長とそれ以外の波長における反射光量の差を用いて、ファイバ 先端部の屈折率を検出できる可能性を示した。また、反射中心波長の異なる二つのグレーティ ングを直列に配置し、異なる方向から非対称断面に加工したものに曲げを与え、反射光スペク トルを測定した。クラッド厚さが14µmの場合、曲げ方向を5°程度、曲率を3.0m⁻¹程度の精 度で測定できることがわかった。

研究成果の概要(英文): Micro-machined grating fiber was evaluated as a sensor for prevention of slope failures. There is some possibility to detect refractive index of liquid on the fiber tip by the difference of reflected light power between at the center reflection wavelength and at the other wavelengths. Reflected light spectra were measured, when a serial arrangement of two FBGs with two different center reflection wavelengths and similar asymmetrical cross sections with different etching faces was bent. It was found that bend was recognized with accuracy of 5° in bend direction and 3.0 m⁻¹ in curvature when the clad thickness was 14 μ m.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2009年度	2,900,000	870,000	3, 770, 000
2010年度	100, 000	30,000	130,000
2011年度	200, 000	60,000	260,000
2012年度	500,000	150,000	650,000
年度			
総計	3, 700, 000	1, 110, 000	4, 810, 000

研究分野: 複合新領域

科研費の分科・細目:社会・安全システム科学・自然災害科学 キーワード:土砂災害、ファイバセンサ、ファイバグレーティング、異方性エッチング

1. 研究開始当初の背景

我が国は国土の多くが山地や丘陵地で占 められており、地すべり・崖崩れ・落石・土 石流といった自然災害が発生しやすい環境 にある。斜面が崩壊する事故が多発しても、 崩壊に至るメカニズムは未だ明らかにされ ていない¹⁾。このような災害に対しては、斜 面の安定性を評価し崩壊の危険性を予測す ることで事故を未然に防ぐ手段を講じるこ とが重要であり、崩壊に至る前兆現象を素早 く捉える必要がある²⁾。斜面内の歪み、地盤 の変位だけでなく、土壌中の水分量も崩壊を 予測するために必要不可欠なパラメータで ある。降雨時および地震時の斜面崩壊は土壌 中の水分量によって自重や動的強度が変化 する等、大きな影響を受けるからである。斜 面内の歪み、地盤の変位を検知する光ファイ バセンサとしては、ブリルアン散乱を利用し た BOTDR 方式³⁾、FBG を利用した方式⁴⁾が代 表的である。BOTDR 方式は光歪分布測定装置 に莫大なコストがかかると共に、光ケーブル の張力管理が難しいため、地盤変位の測定感 度を保持することが難しい。また、FBG を利 用して伸縮計や傾斜計、水位計等を実現した 例も示されているが、一つの FBG で測定でき る物理量は一つであり、これら複数の測定対 象を一つのセンサで測定する試みはほとん ど行われていない。

2. 研究の目的

近年、集中豪雨や大型台風の上陸回数の増加に伴い、山林の崖崩れや堤防の決壊などの被害が多発しており、その脅威は計り知れない。これらの被害を最小限にするために、斜面崩壊の予測システムを確立することは防災における重要な課題である。本研究は、光ファイバブラッググレーティング(FBG)と光ファイバの異方性エッチング技術を組み合わせて作製される非対称断面をもつFBGにより、曲げ方向も含めた地盤内の応力と水分量を同時計測する斜面崩壊防止用のハイブリッドセンサを開発する目的で実施するものである。

- 研究の方法
- (1) 屈折率センサ

土壌中の水分量検出を目的として、グレー ティングファイバを用いた屈折率センサに ついて検討した。グレーティングファイバ先 端部を屈折率の異なる液体に浸漬し、反射光 スペクトルを測定した。具体的には、ASE 光 源(Fiber Labs 製、ASE-6001)からのレーザ光 (1530~1570nm、最大出力 5mW)を、光サー キュレータを介して反射中心波長 1548.5nm のグレーティングファイバに入射した。反射 光スペクトルを光スペクトラムアナライザ (HP 製、70004A)で測定し、反射中心波長

(1548.5nm)での反射光量とそれ以外の波長 (1547.0nm)での反射光量の差を測定した。 屈折率の校正にはポータブル屈折率計(アタ ゴ手持屈折計、R-5000)を用いた。屈折率の 異なる液体として水、デカヒドロナフタレン、 濃度の異なるショ糖水溶液を使用した。ショ 糖の水溶液は、常温での屈折率が1.34~1.46 の範囲で作製した。 (2)曲げセンサ

実験装置の概略を図3.1に示す。グレー ティング領域の断面形状を非対称に加工し たグレーティングファイバ(反射中心波長: 1549.0nm)の2点を、回転ステージ (SIGMA KOKI 製 SKIDS 60YAW型、可動範囲:360°)の 回転軸上に 80mm の間隔で固定した。この非 対称断面グレーティングファイバのグレー ティング領域を内側に含む2点にマイクロコ ントローラ (SIGMA KOKI 製) で制御した応力 印加用金具(応力印加点の間隔:50mm)で応 力を与えることにより、FBG のグレーティン グ領域を含む範囲において均等な曲率とな るような曲げを与えた。この時、曲げを与え ることで FBG に張力を与えないよう、FBG は 先に1点だけ固定し、応力印加用金具の移動 後にもう1点を固定した。ASE 光源 (Fiber Labs 製 ASE-FL6001 形、1530-1570nm、7.5dBm) からの光を、光サーキュレータを介して FBG に入力し、反射光スペクトルを光スペクトラ ムアナライザで測定した。4方向(0°、90°、 180°、270°、加工面側からの曲げを 270° 方向と定義)から曲げを与え、曲率を変化さ せながら反射中心波長を測定した。

センサ部分は図3.2に示す2種類につい て実験を行った。図3.2(a)は単一型であ り、グレーティング領域10mmのFBGを含む 90mmの断面形状を非対称に加工したグレー ティングファイバ(反射中心波長:1549.0nm) である。また、図3.2(b)は直列型であり、 反射中心波長が異なるFBG-A、FBG-B が直列 に配置されているグレーティングファイバ (FBG-Aの反射中心波長:1548.7nm、FBG-B の反射中心波長:1550.3nm、グレーティング 長さおよび間隔:10mm)のFBG-Aを含む40mm の領域とFBG-Bを含む40mmの領域を90°加 工方向の異なる非対称断面に加工したもの である。

図4.1 FBG 先端部の屈折率に対する反射光 スペクトルの変化

グレーティングファイバ先端部を空気、水、 マッチングオイルに浸漬したときの反射光 スペクトルを図4.1(a),(b),(c)に示す。 先端部に浸漬する物質の屈折率が高いほど、 反射光量の差は大きくなった。先端部の屈折 率がコアの屈折率に近づく程、先端部からの 反射光量が減少するためと考えられる。先端 部の周囲屈折率に対する反射光量の差の変 化を図4.2に示す。周囲屈折率に対して反 射光量の差はほぼ直線的に増加した。今回の 実験の屈折率範囲(1.34~1.46)では、 4.5×10⁴ 程度の精度で屈折率を認識できる可 能性があることがわかった。

(2)曲げセンサ

直列FBG型の応力印加用金具の変位に対す る反射中心波長の変化を図4.3に示す。(a) ~(h)は代表的な曲げ方向0°,90°,180°,270°, 45°,135°,225°,315°の場合である。90°,270° 方向の曲げではFBG-Aのみが、0°,180°方向の 曲げではFBG-Bのみがほぼ直線的に変化し、 3mmの応力印加用金具の変位に対し、反射中心 波長は約0.28nm変化した。45°,135°,225°, 315[°]方向の曲げではFBG-A、FBG-B両者の反射 中心波長が変化し、その変化量は0°,90°,180°, 270°の場合の約70%であった。また、応力印加 用金具の変位を3mm一定とした場合の、曲げ方 向に対する反射中心波長の変化量を図4.4 に実線で示す。FBG-A、FBG-Bの反射中心波長 は曲げ方向に対してほぼ正弦的に変化し、そ の位相はほぼπ/2異なったものであった。この 結果から、以下に示す(4-1) 式および(4-2) 式により、曲げ方向θと曲率1/rを同時に検出 できる可能性が示された。

$$\theta = \tan^{-1} \frac{\Delta \lambda_B}{\Delta \lambda_A}$$
(4-1)
$$1/r = k \sqrt{\Delta \lambda_A^2 + \Delta \lambda_B^2}$$
(4-2)

尚、 $\Delta \lambda_A, \Delta \lambda_B$ は各々、FBG-A、FBG-Bの反射中 心波長の変化量、kはエッチングされたファイ バ断面によって決定される比例定数である。

 図4.4 曲げ方向に対する反射中心波長の 変化量(応力印加金具の変位:3mm一定 実線:測定値、破線:理論値)

図4.5 ファイバ断面の概略図(エッチング方向: y 軸正方向)

非対称断面に加工したFBGの曲げに対する 反射中心波長の変化量について考察するため に、理論的な検討を行った。ここで、応力印 加金具(コの字型、間隔:52mm)の変位によ りFBGを含む80mmの領域に生じるファイバの 曲率を一定と仮定した。y軸の正方向からエッ チングを行い、上部のクラッドが除去された ファイバ断面の概略図を図4.5に示す。任 意の方向(x軸からθの方向)に曲げを印加し たと考えると、曲げの中立軸(図中の破線) は図心(図中の×記号)を通り、曲げ方向に 直交する直線となる。コアに生じる歪みはコ アと曲げの中立軸との最短距離y。で決まるの で、反射中心波長の変化量の理論値Δλ は次式 で求められる。

$\Delta \lambda = 0.78 \varepsilon \lambda_s$	(4-3)
$\varepsilon = \frac{1}{r} y_c \sin \theta$	(4-4)

ここで、(4-3)式の λ_s , ε は各々、曲げなし のときの反射中心波長、歪みであり、0.78は ゲージファクターである。 また、(4-4)式の1/r はファイバの曲率であり、曲率を一定と仮定 した条件の下、応力印加金具の変位量と曲率 の関係式から導出した。(4-3) 式、(4-4)式か ら求めた理論値を図4. 4の点線で示す。両 者は同位相で類似の特性を示したものの、測 定値は理論値に比べ、最大で40%程度大きくな った。これらの差が生じた理由として主に3 つの原因が考えられる。1つ目は実験に用い たファイバの断面形状を正確に認識できてい ない可能性が考えられる。断面形状の測定に は実験に用いたものと同時にエッチング加工 したダミーファイバの先端部の断面を用いた。 実験に用いたものはファイバ長手方向の中間 部をエッチング加工したものであり、エッチ ングの状態に差が生じたことも考えられる。 2つ目の原因として、応力印加金具による曲 げの印加方法が考えられる。応力印加金具と

光ファイバの接触部分に摩擦が生じていれば、 曲げによる応力とは別に引っ張り応力、圧縮 応力が印加される可能性がある。1つ目、2 つ目の原因は単一型、直列型いずれにも共通 に生じる可能性がある。事実、単一型の場合、 反射中心波長変化量の測定値は最大で、理論 値の115%程度であった。測定値と理論値の差 が異なる3つ目の原因として、単一型と直列 型の加工形状の違いが起因していると考えら れる。具体的には、曲げの印加領域において ファイバの断面形状が単一型ではほぼ均一で あるのに対し、直列型では不連続に変化して いる箇所が存在する。このため、応力印加金 具の変位量が同じであっても、単一型に比べ 最大で20%以上、大きな曲率が生じている可能 性があるものと考えられる。以上のように、 曲率一定と仮定したモデルによる理論値との 差異は生じたものの、非対称断面に加工した 直列型FBGを用いて、5°程度の精度で曲げ方 向を、10%程度の精度で曲率を測定できること が示された。

一方、一つの FBG から直列型と同等の機能 が実現できないかについても実験を行った。 グレーティング長 20mm の FBG のうち 15mm に 対し任意方向から、5mmに対し90°異なる方 向から各々異方性エッチングを行った。前述 の方法で FBG 部に曲げを与えながら反射光ス ペクトルを測定した。二つの領域ではグレー ティング長が異なるため、反射率にも差が生 じるとともに、加工方向が異なるため、任意 の方向に曲げを与えた場合、反射中心波長の 変化量に差が生じる。従って、応力印加金具 の変位量を増大するに従い、反射光スペクト ルが二つに分離することが確認でき、一つの FBG からでも直列型と類似の結果が得られた。 ただし、両者の反射中心波長が約 0.18nm 以 上の差を生じないと、反射光スペクトルを明 確に分離できなかったため、適用できるのは 一定(4.8m⁻¹)以上の曲率に限定される課題 が判明した。

参考文献

- 1) 大西有三,西山哲:岩盤崩壊メカニズムについて, 地質と調査,Vol. 3,pp. 9-15,2002.
- 2) 奥園誠之:要注意切土のり面の管理技術について、 基礎工,Vol. 24, No. 6, pp. 36-41, 1996
- 3) Thi Ha, 森脇武夫、佐々木康、加納誠二、 Dissanayake A. Kamalnath:地盤と建設、Vol.19, No.1, 2001
- 4) 北村良介、川井田実、阿部寛史、城本一義、寺 地卓也:砂質土地盤でのサクションの現地計測 システムの開発、土木学会論文集 No.652/Ⅲ -51、pp.287-292,2000

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計0件)

```
〔学会発表〕(計3件)
```

 曲げに対する直列型非対称断面 FBG の反 射特性、〇<u>熊崎裕教</u>・稲葉成基・小栗久和、 羽根一博、平成25年電気学会全国大会論文 集(2013.3.22、名古屋大学)

② Mechanical stress sensors using micromachined grating fibers, ○<u>Hironori Kumazaki</u>, Munehiro Hiramatsu, Hisakazu Oguri, Seiki Inaba, and Kazuhiro Hane, 21st International Conference on Optical Fiber Sensors, (May19, 2011, Ottawa, Canada)
③ 微細加工FBGによるひずみ測定精度の向上、○平松宗大・梅田晶央・<u>熊崎裕教</u>・小栗 久和・稲葉成基・羽根一博、平成 22 年度電気学会全国大会論文集(2010.3.17、明治大学駿河台キャンパス)

〔図書〕(計0件)

〔産業財産権〕 ○出願状況(計0件) 名称: 発明者: 権利者: 種類: 番号: 出願年月日: 国内外の別: ○取得状況(計0件) 名称: 発明者: 権利者: 種類: 番号: 取得年月日: 国内外の別: [その他] ホームページ等 6. 研究組織 (1)研究代表者 熊崎 裕教(KUMAZAKI HIRONORI) 岐阜工業高等専門学校・電気情報工学科・ 教授

研究者番号:70270262

(2)研究分担者 ()

研究者番号:

(3)連携研究者 ()

研究者番号: