## 科学研究費助成事業(科学研究費補助金)研究成果報告書

平成 24 年 5 月 15 日現在

機関番号: 12102

研究種目:基盤研究(C) 研究期間:2009~2011 課題番号: 21550033

研究課題名(和文)高周期14族元素環状ポリイン配位子をもつ遷移金属錯体に関する研究 研究課題名 (英文) Transition Metal Complexes with the Cyclic Polyene Ligands of the Heavy

Group 14 Elements

研究代表者

Lee Vladimir (LEE VLADIMIR) 筑波大学・数理物質系・講師 研究者番号:90375410

### 研究成果の概要(和文):

近年、炭素π電子系の高周期元素類縁体が知られるようになった。そこで高周期元素からなる 環状π配位子もつ有機金属錯体の構造や性質の解明を行った。本研究ではケイ素、ゲルマニウ ム等の高周期14族元素からなるシクロブタジエンジアニオンやシクロペンタジエニドを合成 し、その構造や電子状態を比較検討した。テトラゲルマシクロブタジエンジアニオンは現在知 られている 6π電子配位子の中では最も重い高周期元素からなる化合物である。

### 研究成果の概要(英文):

Using tetragermacyclobutadiene dianion derivatives, we synthesized novel coordination compounds with the unprecedented tetragermacyclobutadiene ligand, including iron and cobalt complexes. It was found that the ligand is much stronger pi-donor.

## 交付決定額

(金額単位:円)

|         | 直接経費        | 間接経費        | 合 計         |
|---------|-------------|-------------|-------------|
| 2009 年度 | 1, 900, 000 | 570, 000    | 2, 470, 000 |
| 2010 年度 | 900, 000    | 270, 000    | 1, 170, 000 |
| 2011 年度 | 900, 000    | 270, 000    | 1, 170, 000 |
| 年度      |             |             |             |
| 年度      |             |             |             |
| 総計      | 3, 700, 000 | 1, 110, 000 | 4, 810, 000 |

研究分野: 化学

科研費の分科・細目: 基礎化学・有機化学

キーワード: 有機元素化学

### 1. 研究開始当初の背景

The field of the low-coordinate compounds of the heavy group 14 elements is one of the most important and fundamental areas of the contemporary organometallic chemistry with many world-leading research groups being involved in such studies. The synthesis of the tri- and dicoordinate derivatives,

featuring double or triple bonds between the group 14 elements, is one of most attractive for synthetic targets organometallic chemists during several decades. On the other hand, utilization of the cyclic polyene ligands with the skeletal heavy group 14 elements for the synthesis of the novel transition metal complexes became recently a new great synthetic challenge, bridging together the research areas of both main group and transition metals chemistry. However, this field was very poorly explored until now. Therefore, the main purpose of our project proposals is the breakthrough in such highly promising novel area, associated with the systematic synthesis, study and search for practical application of the transition metal complexes of the new generation featuring heavy group 14 elements in their cyclic polyene ligands.

## (1) Heavy Analogues of Alkenes

The field of the doubly-bonded derivatives of the heavy group 14 elements ("heavy alkenes") was developed since the synthesis of the first stable disilene Mes<sub>2</sub>Si=SiMes<sub>2</sub> by R. West (USA) in 1981. Our contribution to this field includes the first heteronuclear "heavy alkenes, dienes and allenes": >Si=Ge< (J. Am. Chem. Soc. 2000, 122, 9034, 12604, highlighted in ACS *C&E News*, **2000**, issue 39, p. 39), >Si=Sn< (J. Am. Chem. Soc. 2002, 124, 14822, highlighted in ACS C&E News, **2002**, issue 50, p. 24), >Ge=Sn<2003, (Organometallics 22, 1483), [>E-M-E<]-Li+(E = Si, Ge; M = Ga,In) (J. Am. Chem. Soc. 2004, 126, 5058; Chem. Lett. 2008, 37, 1146).

# (2) Heavy Analogues of Cyclic Polyenes

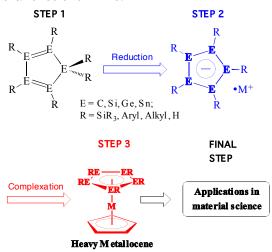
We also synthesized the first examples of the new class of compounds - cyclic polyenes and their anionic derivatives: heavy cyclopropenes (J. Am. Chem. Soc. 2000, 122, 9034; Angew. Chem. Int. Ed. 2005, 44, 6378; J. Am. Chem. Soc. 2007, 129, 2436), heavy cyclobutenes (J. Am. Chem. Soc. 2003, 125, 6012; J. Am. Chem. Soc. 2004, 126, 4758; Angew. Chem. Int. Ed. 2004, 43, 6703; J. Am. Chem. Soc. 2008. 130, 2758), heavy cyclopentadienes (J. Am. Chem. Soc. 2000, 122, 12604; J. Am. Chem. Soc. 2005, 127, 13142; J. Am. Chem. Soc. 2007, 129, 10340).

# (3) Heavy Analogues of Carbocations, Free Radicals, Carboanions

Another important class of low-coordinate organometallics, tricoordinate cations, radicals and anions of the heavy group 14 elements, was a long-standing problem and highly desirable target for organometallic chemists. Our group prepared the first isolable Si-, Ge- and Sn-cations, radicals and anions and established their reversible redox interconversion (*J. Am. Chem. Soc.* **2002**, *124*, 9865; *J. Am. Chem. Soc.* **2003**, *125*, 9250; *Angew. Chem. Int. Ed.* **2003**, *42*, 1143; *J. Am. Chem. Soc.* **2004**, *126*, 11758; *Acc. Chem. Res.* **2007**, *40*, 410).

## (4) Heavy Analogues of Cage Compounds

The chemistry of the polyhedral cage with "non-classical" compounds a hybridization of the skeletal atoms, first of bicyclo[1.1.0]butanes all, tricyclo[2.1.0.0<sup>2,5</sup>]pentanes, is one of the milestone discoveries in organic chemistry. We prepared the first heavy group 14 element analogues of the cage compounds with either extremely long,  $tricyclo[2.1.0.0^{2,5}]$  pentanes (J. Am.Chem. Soc. 2002, 124, 9962), or extremely short, bicyclo[1.1.0]butanes (J. Am. Chem. Soc. 2007, 129, 2436; J. Am. Chem. Soc. 2008, 130, 2758), bridging E-E bonds.


#### 2. 研究の目的

Based on our experience and previous achievements in the field of low-coordinate derivatives of heavy group 14 elements (particularly, cyclic polyenes), we decide to start up a new project bridging the fields of the main group elements and transition metals. The major goal of this project is the design, study and search for the practical applications of the totally new class of hybrid main group element—transition metal complexes. The project consists of three major steps: 1) synthesis of the cyclic polyenes, 2) generation of the aromatic (4n + 2) p-electron species from them, 3)

synthesis of the transition metal complexes with the heavy cyclic polyene ligands. Finally, we plan to find the possible utilization of new complexes: catalysis, supramolecular chemistry, nonlinear optics, molecular magnets, etc.

### 3. 研究の方法

Abstract: During the period of the proposed project we plan to develop the synthesis and study of the transition metal complexes with the cyclic polyene ligands of the heavy group 14 elements. Such complexes are expected to possess novel, technologically attractive, highly promising properties, which would allow their successful practical utilization for production of advanced easily processable materials of the new generation for various branches of our life.



# (1) The first year of the project (2009.4 - 2010.3):

During the first year of the project we will synthesize precursors of the  $2\pi$ - and  $6\pi$ electron charged derivatives (cyclopropenylium  $R_3E_{3}^+,$ ion cyclobutadiene  $R_4 E_4^{2-}$ dianion and cyclopentadienide ion  $R_5E_5$ ; E = Si, Ge, Sn, Pb). The chemistry of such compounds is still largely unexplored, therefore the novel synthetic strategies based on the specific properties of the heavy group 14 elements will be developed.

The heavy cyclopropenes  $R_4E_3$  (precursors for the heavy cyclopropenylium

ions  $R_3E_3^+$ ) are planned to be prepared by the recently discovered by us coupling reaction of tetrahalodimetallanes  $RX_2E-EX_2R$  and 1,1-dilithio derivatives  $R'_2ELi_2$  in aromatic solvents (Scheme 1).

Scheme 1: Synthesis of the Heavy Cyclopropene Derivatives

The heavy cyclobutenes  $R_4X_2E_4$  (precursors for the heavy cyclobutadiene dianions  $R_4E_4^{2-}$ ) will be prepared by either cycloaddition—ring expansion of the heavy cyclopropenes  $R_4E_3$  or reduction of the corresponding halocyclotetrametallanes  $R_4X_4E_4$  (Scheme 2).

Scheme 2: Synthesis of the Heavy Cyclobutene Derivatives



The heavy cyclopentadienes R<sub>6</sub>E<sub>5</sub> (precursors for the heavy cyclopentadienide ions R5E5-) will be cycloaddition-ring synthesized by the expansion reaction of the heavy cyclopropenes R<sub>4</sub>E<sub>3</sub> and alkynes (Scheme 3).

Scheme 3: Synthesis of the Heavy Cyclopentadiene Derivatives



All above–described precursors will be synthesized in necessary amounts (gram-order scales) to for their further transformation to the  $2\pi$ – and  $6\pi$ – electron species, and finally – to transition metal complexes.

# (2) The second and third years of the project (2010.4 -2012.3):

During the second year of the project

we plan to generate stable charged  $2\pi$ - and  $6\pi$ -electron heavy analogues of the cyclopropenylium ion, cyclobutadiene dianion and cyclopentadienide ion derivatives (Scheme 4).

Scheme 4: Heavy Cyclopropenyllum Ions, Heavy Cyclobutadiene Dianions, Heavy Cyclopentadienide Ions







Thus, the heavy cyclopropenylium ions are planned to be prepared by the oxidation of heavy cyclopropenes (Scheme 1) with the powerful Lewis acids, such as Ph<sub>3</sub>C+•BAr<sub>4</sub>-, Et<sub>3</sub>Si<sup>+</sup>•BAr<sub>4</sub><sup>-</sup>, etc. The cyclobutadiene dianions will be prepared by the dehalogenative reduction of the heavy cyclobutenes (Scheme 2) with either alkali or alkaline earth metals. The heavy cyclopentadienide ions are planned to be prepared by the desilylative reduction of the heavy cyclopentadienes (Scheme 3) with alkali metals. The synthesis of target  $2\pi$ - and  $6\pi$ -electron species will be accompanied by their comprehensive investigation: estimation of their aromaticity, study of their structures and bonding, synthetic application of these species in organometallic chemistry.

Finally, during the third year of the project we will utilize such  $2\pi$ - and  $6\pi$ -electron species as ligands for the synthesis of the novel transition metal complexes (first of all, metallocenes) for their possible technological use. The reactions of the above-described  $2\pi$ - and  $6\pi$ -electron derivatives with a variety of transition metal complexes (first of all, of the groups 6-9) will be performed to prepare the desired novel complexes (Scheme 5). After the preparation of such complexes, their particular structures and

Scheme 5: Heavy Cyclopropene , Heavy Cyclobutadiene and Heavy Cyclopentadiene Transition Metal Complexes







bonding interactions will be studied in details. As a final part of the work, the newly synthesized complexes will be tested for their possible practical utilization as precursors for OMCVD and conducting materials, coatings, ceramics, polymers, nanocrystals for electronic devices, etc.

In the case of problems to realize our plan for the synthesis original appropriate precursors for the cyclic polyene ligands for novel transition metal complexes, we will then examine other synthetic routes for their preparation, for example: for the synthesis of heavy cyclopropenes - direct coupling of REX3 and R<sub>2</sub>E'X<sub>2</sub> with metallic Na, for the of heavy synthesis cyclobutenes reduction of REX3 with LiNp or KC8, for the synthesis of heavy cyclopentadienes of coupling reaction the heavy cyclobutadiene dianions R<sub>4</sub>E<sub>4</sub><sup>2-•</sup>2M<sup>+</sup> with dihalometallanes R2EX2, etc.

To realize the specific goals of the project, we have a team of undergraduate, graduate and post-graduate students, supervised by the staff members. In the framework of the project we plan to collaborate with the world-famous groups of both theoreticians (Profs. Y. Apeloig (Israel) and G. Frenking (Germany)) for comprehensive computational studies and experimentalists (Profs. J. Escudié (France) and M. Driess (Germany)) for the joint synthetic work.

## 4. 研究成果

The precursor for the "heavy" cyclobutadiene dianion derivative. dichlorotetragermacyclobutene, was successfully prepared fully characterized. By the reduction of this precursor with potassium graphite, the heaviest analogue of the 6π-electron cyclobutadiene dianion, namely, tetragermacyclobutadiene dianion dipotassium salt derivative. was synthesized and structurally characterized for the first time, and its preparation method was optimized. The degree of aromaticity of this compounds was evaluated from both experimental and computational points of view, systematic structural comparison of the tetragermacyclobutadiene cyclobutadiene dianion to its lighter analogues, silicon and carbon counterparts. has been made. From structural and the magnetic (computational) properties of this new compound, classified itwas as a The non-aromatic organometallic. reactivity of both neutral precursor, 3,4-dichlorotetragermetene, and the dipotassium salt of the tetragermacyclobutadiene dianion derivative was studied with the particular attention paid for their utilization as the ligands for transition complexes of the new generation. Both compounds appeared to be very useful for the preparation of novel coordination with compounds the tetragermacyclobutadiene ligand. Thus, several novel coordination compounds with the unprecedented tetragermacyclobutadiene ligand, including (tetragermacyclobutadiene)tricarbonyl iron (tetragermacyclobutadiene)cobalt and cyclopentadienyl complexes, successfully synthesized. The solution and solid-state structures and particular bonding situations of the newly prepared complexes were determined by spectroscopic, structural and computational On methods. the basis ofcrystallography, <sup>13</sup>C NMR spectroscopy and IR spectroscopy, it was found that the tetragermacyclobutadiene ligand is much stronger π-donor towards the transition metal than the corresponding carbon and even silicon analogues. Such enhanced π-donating ability of the tetragermacyclobutadiene ligand was attributed to its higher HOMO energy level with those compared tetrasilacyclobutadiene and cyclobutadiene ligands.

## 5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計10件)

- V. Ya. Lee, A. Sekiguchi. Novel Organometallic Reagents: Geminal Dianionic Derivatives of the Heavy Group 14 Elements (FORUM Article). Inorg. Chem., 2011, 50, 12303-12314. 查読有. DOI: 10.1021/ic2006106
- V. Ya. Lee, Y. Ito, H. Yasuda, K. Takanashi, A. Sekiguchi. From Tetragermacyclobutene to Tetragermacyclobutadiene Dianion to Tetragermacyclobutadiene Transition Metal Complexes. J. Am. Chem. Soc. 2011, 133, 5103-5108. 查読有. DOI: 10.1021/ja111596g
- 3. <u>V. Ya. Lee</u>, K. McNeice, Y. Ito, A. Sekiguchi. A Blue Digermene (t·Bu<sub>2</sub>MeSi)<sub>2</sub>Ge=Ge(SiMet·Bu<sub>2</sub>)<sub>2</sub>. Chem. Commun. **2011**, 3272–3274. 查読有. DOI: 10.1039/C0CC05415A
- 4. V. Ya. Lee, A. Sekiguchi, J. Escudié, H. Ranaivonjatovo. Heteronuclear Double Bonds E=E' (E = Heavy Group 14 Element, E' = Group 13–16 Element). Chem. Lett. 2010, 39, 312–318. 查読有. http://dx.doi.org/10.1246/cl.2010.312
- V. Ya. Lee, K. Takanashi, A. Sekiguchi. Two-and-a-Half-Layer Sandwich: Potassium Salt of the Anionic (η<sup>4</sup>-tetrasilacyclobutadiene)(η<sup>5</sup>-cyclopen tadienyl)ruthenium. Dalton Trans. 2010, 39, 9229–9231 (Cover Picture of the Themed Issue #39: New Horizon of Organosilicon Chemistry). 査読有. DOI: 10.1039/C0DT00009D
- 6. <u>V. Ya. Lee</u>, M. Kawai, A. Sekiguchi, H. Ranaivonjatovo, J. Escudié. A "Push–Pull" Phosphasilene and Phosphagermene and Their Anion-Radicals. *Organometallics* **2009**, *28*, 4262–4265. 查 読 有 . DOI: 10.1021/om900310u
- 7. <u>V. Ya. Lee</u>, T. Yokoyama, K. Takanashi, A. Sekiguchi. Pentasilatricyclo[2.1.0.0<sup>2,5</sup>]pentane and Its Anion. *Chem. Eur. J.* **2009**, *15*,

- 8401-8404. 查 読 有 . DOI: 10.1002/chem.200900567
- H. Yasuda, V. Ya. Lee, A. Sekiguchi. η<sup>5-</sup>1,2,3-Trisilacyclopentadienyl A Novel Ligand for Transition Metal Complexes: Rhodium Half-Sandwich and Ruthenium Sandwich. J. Am. Chem. Soc. 2009, 131, 9902–9903. 查読有. DOI: 10.1021/ja9038664
- 9. H. Yasuda, V. Ya. Lee, A. Sekiguchi. Si<sub>3</sub>C<sub>2</sub>-Rings: From a Nonconjugated Cyclopentadiene to an Aromatic Cyclopentadienide and Cyclic Disilenide. J. Am.Chem. Soc.2009, 131, 読 6352 - 6353.査 有 DOI: 10.1021/ja901881z
- 10. K. Takanashi, <u>V. Ya. Lee</u>, T. Yokoyama, A. Sekiguchi. Base-Free Molybdenum and Tungsten Bicyclic Silylene Complexes Stabilized by a Homoaromatic Contribution. *J. Am. Chem. Soc.* **2009**, *131*, 916–917. 查読有. DOI: 10.1021/ja8088313

### [学会発表](計5件)

- V. Ya. Lee. The Variations on a Theme of a Cyclobutadiene Dianion: Silicon and Germanium Versions. Sixteenth International Symposium on Silicon Chemistry (ISOS-XVI), Hamilton, Ontario, Canada, August 16, 2011 [invited].
- 2. V. Ya. Lee, Y. Ito, H. Yasuda, A. Sekiguchi. From Tetragermacyclobutadiene Dianion to Transition Metal Complexes Featuring Tetragermacyclobutadiene Ligand. 13th International Conference on the Coordination and Organometallic Chemistry of Germanium, Tin and Lead (ICCOC-GTL-13), Austria, Graz, July 14, 2010.
- 3. <u>V. Ya. Lee</u>, T. Yokoyama, K. Takanashi, A. Sekiguchi. From Schrock Silylene/Germylene Transition Metal Complexes to (Sila/Germa)metallacyclobutenes, "Frozen" Intermediates of the Silicon/Germanium Variations of

- Metathesis Reactions. 13<sup>th</sup>
  International Conference on the
  Coordination and Organometallic
  Chemistry of Germanium, Tin and Lead
  (ICCOC-GTL-13), Austria, Graz, July 7,
  2010.
- 4. <u>V. Ya. Lee</u>, R. Kato, H. Yasuda, A. Sekiguchi. Cyclopentadienyl Anions of the Heavy Group 14 Elements: New Generation Ligands for Coordination Chemistry. *International Symposium on Creation of Functional Materials*, Japan, Tsukuba, Tsukuba International Congress Center, December 3, **2009**, [invited].
- 5. V. Ya. Lee. Heavy Analogues of the 6π-Electron Charged Systems: Bonding, Aromaticity, and Applications as Novel Ligands for Transition Metal Complexes. International Conference on Organic Chemistry (dedicated to 75<sup>th</sup> anniversary of N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences), Russia, Moscow, October 26, 2009 [invited].

[図書] (計2件)

- 1. <u>V. Ya. Lee</u>, A. Sekiguchi. Organometallic Compounds of Low-Coordinate Si, Ge, Sn and Pb: From Phantom Species to Stable Compounds, Wiley, Chichester, **2010** (monograph). 総ページ数 431 頁.
- 2. V. Ya. Lee, A. Sekiguchi. Ultrashort C-C Bonds. In Strained Hydrocarbons: Beyond the van't Hoff and Le Bel Hypothesis (Ed.: H. Dodziuk), Wiley-VCH, Weinheim, 2009, Chapter 2.6, pp. 82-92.

[その他]

ホームページ等

http://nao.chem.tsukuba.ac.jp/sekiguch/index.htm

6. 研究組織

(1)研究代表者

Lee Vladimir (LEE VLADIMIR) 筑波大学・数理物質系・講師 研究者番号: 90375410