科学研究費助成事業(科学研究費補助金)研究成果報告書

平成24年 6月 8日現在

機関番号:82110 研究種目:基盤研究 研究期間:2009~2011 課題番号:21560059	(C)		
研究課題名(和文)	高速中性子イメージング用輝尽性蛍光体の研究		
研究課題名(英文)	Research on Photostimulated Phosphors for Fast Neutron Imaging		
研究代表者 坂佐井 馨(SAKASAI KAORU) 独立行政法人日本原子力研究開発機構・J-PARC センター・研究主幹 研究者番号:00343913			

研究成果の概要(和文):

高速中性子の検出・イメージングを行うため、輝尽性蛍光体とポリエチレンを用いる方法に ついて研究を行った。その結果、高い感度で検出するためにはポリエチレンを全面に配置する 方法が、高い位置分解能で検出するにはポリエチレンと輝尽性蛍光体を混合する方法が有効で あることがわかった。また、これを基に実際に 10cm×10cm 程度の大きさの実用的なプレートを 作成した。

研究成果の概要(英文):

In order to detect or image fast neutrons, detection methods using photostimulated phosphors and polyethylene have been studied. As a result of experimental and numerical studies, it was confirmed that the method where the polyethylene sheets were set in front of the phosphors was effective for high sensitive detection, while the method using the mixture of polyethylene powder and the phosphors for imaging with high position resolution. In addition, based on the results, practical plates with an area of 10 x 10 cm² have been manufactured.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2009 年度	1, 100, 000	330,000	1, 430, 000
2010 年度	800,000	240,000	1,040,000
2011 年度	1,700,000	510,000	2, 210, 000
年度			
年度			
総計	3, 600, 000	1, 080, 000	4, 680, 000

研究分野:放射線検出器

科研費の分科・細目:応用物理学・工学基礎・応用物理学一般 キーワード:高速中性子、イメージング、輝尽性蛍光体

1. 研究開始当初の背景

日本原子力研究開発機構と高エネルギー 加速器研究機構との共同プロジェクトであ る大強度陽子加速器(J-PARC)計画や米国の SNS計画をはじめ、国内外で大型の加速器の 建設計画が進められている。それに伴い広い エネルギー領域の中性子の利用が可能にな り、熱中性子だけでなく、高速中性子の線量 測定あるいはそのイメージングの必要性が 高まってきている。高速中性子は線質係数が 大きく、人体への影響も多大であるので、そ の量及び分布を正確に評価することは極め て重要である。一方、熱中性子用としては、 中性子イメージングプレートが開発され、生 物単結晶の中性子散乱研究に使用され、多大 な成果をあげている。しかし、中性子イメー ジングプレートは元来X線あるいはガンマ線 用検出媒体として開発された BaFBr:Eu とい う輝尽性蛍光体に中性子コンバータとして 酸化ガドリニウムを混合したものからでき ている。したがって、積分型検出器である中 性子イメージングプレートを用いた場合、検 出器信号として中性子によるものだけでな く、ガンマ線が付随する場においては、厚い 鉛等の遮蔽対策を講じない限り、ガンマ線に よる信号も混在することになる。このように、 中性子イメージングプレートは、高性能では あるがガンマ線の問題がつきまとっていた。

2. 研究の目的

一方、中性子の捕獲反応の断面積は通常中 性子のエネルギーが高くなるにつれて減少 するため、高エネルギー中性子イメージング 検出媒体として輝尽性蛍光体を使用する場 合には、中性子の捕獲反応ではなく、中性子 と水素の弾性散乱を利用するのが得策であ る。このため、X 線あるいはガンマ線用の BaFBr:Eu 輝尽性蛍光体の前面に有機高分子 で作られたラジエータを配置し、高速中性子 と水素の弾性散乱による反跳陽子を輝尽性 蛍光体で検出する方法が有効であるが、 BaFBr:Euのガンマ線感度が高いため、ガンマ 線の付随する場では、遮蔽対策を施さない限 り、ガンマ線/中性子感度比の向上は期待で きない。一方、前年度までの成果により、研 究代表者らが開発した SrBPO₅:Eu²⁺輝尽性蛍 光体にラジエータを配置し、その厚さを実験 的理論的に最適化を図る等の工夫を行い、従 来型に比べガンマ線感度の影響が一桁少な い高速中性子イメージングの取得の見通し が得られた。ただ、昨年度までの媒体は直径 10mm 程度のサンプルであり、イメージングを 取得するにはやや小さい。このため、本申請 課題では、最適な検出媒体及び検出方法を見 極め、最終年度には 10cm×10cm 程度のプレ ートを製作する。

3. 研究の方法

輝尽性蛍光体を用いて高速中性子イメー ジングを行うには、3 つの方法がある。すな わち、1)ガンマ線感度の低い輝尽性蛍光体 の前面に有機高分子でできたラジエータを 配置する方法、2)ガンマ線感度の低い輝尽 性蛍光体中にラジエータ材料を分散させる 方法、及び3)ガンマ線感度が低く、かつ母 体に水素を多く含有する輝尽性蛍光体を開 発する方法である。本研究では、主に1)及び 2)の方法で研究を進めた。1)及び2)の方法 の概念図をそれぞれ図1及び図2に示す。図 1では、左側から高速中性子が入射し、弾性 散乱によって生じた陽子が輝尽性蛍光体中

図 1 ガンマ線感度の低い輝尽性蛍光体の前面にラジ エータを配置する方法

低ガンマ線感度の輝尽性蛍光体

図 2 ガンマ線感度の低い輝尽性蛍光体中にラジエ ータ材料を分散させる方法

に入射する。この輝尽性蛍光体表面をレーザ ーで走査することによって、輝尽性蛍光強度 分布を知ることが可能となり、陽子、すなわ ち高速中性子のイメージを取得することが 可能である。ただし、陽子のエネルギーE_nは、 高速中性子のエネルギーE_nと E_p=E_ncos²・(・ は散乱角)の関係があり、さらにラジエータ は有限の厚みを持つので、その位置分解能は 制限される可能性がある。

図2では、図1と同様、左側から高速中性 子が入射し、分散させたラジエータ中の水素 と高速中性子の弾性散乱によって生じた陽 子が輝尽性蛍光体に入射して電子・正孔対を 生成する。本方法では、ラジエータ材料が輝 尽性蛍光体中に分散されているので、1)の 方法よりは位置分解能が改善される。ただし、 ラジエータ材料を多量に分散させることが 困難であるので高速中性子による出力は比 較的小さい可能性があるしかし、

1)の方法での実験では、輝尽性蛍光体とし て低ガンマ線感度の KC1:Eu²⁺及び KBr:Eu²⁺を 主に用いた。高速中性子としてはエネルギー 14MeV を用い、ラジエータの厚さを変化させ てその輝尽性蛍光出力を測定すると共に、 PHITS を用いたシミュレーション計算を実施 した。また、2)の方法では、KC1:Eu²⁺蛍光体 とポリエチレンの混合物を用い、その混合比 を変化させて実験を行った。

4. 研究成果

(1) 高速中性子照射実験方法

KC1:Eu²⁺ 蛍光体及び KBr:Eu²⁺ 蛍光体のサン プルの製作方法は以下の通りである。

KC1(KBr)及び EuCl₂を適量秤量し、乳鉢で 約 20 分間混合後、電気炉(空気雰囲気)で 700℃で 3 時間焼成した。冷却後粉砕しさら に 20 分間乳鉢で混合し、再度 700℃で 3 時間 焼成した。冷却後粉砕し、最後にペレット状 容器に入れ、60 トンの圧力をかけてサンプル を製作した。製作したサンプルの色は共に自 色で大きさは直径 13mm、厚さ 1.5mm である。 図 3 に製作したサンプルの外観写真(KC1:Eu²⁺ 蛍光体)を示す。

なお、輝尽性蛍光体として出力を有するた

図3 製作した KCl:Eu2+サンプルの外観写真

めに必要な活性化物質として従来の EuCl₃から EuCl₂に変更した。これは活性化物質として2価の Eu が必要であるが、EuCl₃では3価のまま残っている部分が少なくないことが考えられるからである。この変更により出力が数倍増加したことが確認できている。

高速中性子照射実験は、原子力機構の核融 合中性子工学用中性子源施設(FNS)で行っ た。FNSでは、400keV加速器で加速された荷 電粒子(deuteron)を中性子発生用ターゲッ ト(トリチウム)に入射させ、ターゲット内で 起こる核反応を利用して中性子を発生させ ている。使用した核反応はT(d, n)⁴Heで、発 生する中性子のエネルギーは14.8MeVであり、 中性子発生数は3×10¹¹n/sである。高速中性 子照射位置での照射量は⁹³Nb(n, 2n)^{93m}核反応 を用いた放射化により決定した。

高速中性子照射後、輝尽性蛍光出力を図 5 に示す測定体系で測定した。高速中性子で照 射された試料を半導体レーザー(オーディオ テクニカ製、SU-31E、635nm、6mW)で照射す ることにより、輝尽性蛍光を発生させる。輝 尽性蛍光は光電子増倍管(浜松ホトニクス製、 R647P)で測定されるが、レーザー光その他 のバックグラウンド光を除去するため、光電 子増倍管の受光面に400nm干渉フィルタをセ ットした。光電子増倍管からの信号はフォト

図 5 輝尽性蛍光特性測定体系

ンカウンティングユニット(浜松ホトニクス 製、C3866)にて NIM 信号に変換され、その 出力パルスを高速カウンタ(ヒューレットパ ッカード製、HP53131A)で測定した。なお、 この測定システムは GP-IB を通じて全てコン ピュータ制御されている。また、測定系の一 部(図中で点線で囲まれた部分)は簡易暗室 におかれている。

(2) ラジエータを全面に置いた場合の照射実験結果

図6及び図7は前面にポリエチレンシート を配置した場合の14MeV 高速中性子照射実験 結果を示す。実験ではポリエチレンシートの 厚さを変えて行った。高速中性子照射量は、 それぞれ 7.2×10⁹n/cm²、6.3×10⁹n/cm² であ る。両図では、ガンマ線の影響や高速中性子 とポリエチレンシート等の核反応の影響を 除去するため、ポリエチレンシートのない場 合の出力を差し引いている。また、図中には、 モンテカルロシミュレーションコード PHITS (Multi-Purpose Particle and Heavy Ion Transport Code System) を用いて計算した 結果も併せて示す。計算では、高速中性子は ポリエチレンシートに垂直に照射されるよ うに設定され、照射面積は実験と同様 1cm× 1cm である。計算したのは、蛍光体に付与さ れる単位体積あたりの平均付与エネルギー である。輝尽性蛍光出力は付与エネルギーに 比例すると考えられるので、図中では、実験 で得られた最大の輝尽性蛍光出力に計算結 果を規格化した。実験及び計算から、最大の 輝尽性蛍光出力を与えるポリエチレンシー トの厚さは約3mmであることがわかる。14MeV のエネルギーを有する陽子のポリエチレン 中での飛程は 3mm 程度なので、両図のエネル ギー付与及び輝尽性蛍光出力のポリエチレ ンシートの厚さ依存性は容易に理解できる。 図8にはKBr:Eu²⁺中での陽子のフラックスの 計算結果を示す。ポリエチレンシートの厚さ が 3mm 以上ではほぼ一定になっていることか らもこの依存性がよりはっきりわかる。

さて、図6と図7からPHITSで計算したエ ネルギー付与あたりの輝尽性蛍光出力を評 価することができる。その結果を図9と図10

図 6 ポリエチレンシートの厚さを変えた場合の KCI:Eu²⁺試料のPSL強度。ただし、ポリエチレンがな い場合の値を差し引いている。実線は計算結果で実 験値の最大値に規格化している。

図 7 ポリエチレンシートの厚さを変えた場合の KBr:Eu²⁺試料の PSL 強度。ただし、ポリエチレンが ない場合の値を差し引いている。実線は計算結果で 実験値の最大値に規格化している。

図 8 ポリエチレンシートの厚さを変えた場合の KBr:Eu²⁺試料中の陽子のフラックス。

に示す。ただし、付与エネルギーはガンマ線 がないものとして計算したものであること に注意する。したがって、計算結果と実測値 との差がガンマ線の影響によるものと考え られるが、図9及び図10では計算結果と実 測値がほぼ一致している。このことは、この 2つの試料はガンマ線感度が非常に低いこと を意味している。

前面にポリエチレンシートを配置した場 合、ポリエチレン中の水素原子と高速中性子

図 9 ポリエチレンシートの厚さを変えた場合の KCI:Eu²⁺試料の PSL 強度。計算値は、図 8 から評価し た単位付与エネルギーあたりの PSL 強度。

図 10 ポリエチレンシートの厚さを変えた場合の KBr:Eu²⁺試料の PSL 強度。計算値は、図 9 から評価 した単位付与エネルギーあたりの PSL 強度。

図 11 計算したエネルギー付与分布。ここに、高速 中性子は試料の半面のみを照射したものとして計算 した。

との弾性散乱で発生した陽子によって蛍光 体中にエネルギーが付与され、また、陽子エ ネルギー E_p と中性子エネルギー E_n の間には $E_p=E_n\cos^2$ ・の関係(・は散乱角)があるた め、分解能が低下する可能性がある。このた め、試料の位置分解能を PHITS で評価した。 図 11 は前面にポリエチレンシートのついた KBr:Eu²⁺試料の半面に高速中性子が照射され た場合のエネルギー付与を位置の関数とし てプロットしたものである。通常この曲線を Edge Spread Function (ESF)と呼び、これを 微分した関数を Line Spread Function (LSF) と呼んでいる。ガウス型の ESF

$$C_1 + C_2 \times Erf[-\lambda(x - x_0)]$$

で図 12 の曲線をフィッティングし、その LSF の半値幅で分解能を定義すると、

$$\frac{2\sqrt{\ln 2}}{\lambda} = 0.46(mm)$$

となった。これが KBr:Eu²⁺試料を用いる場合 に得られる最大の位置分解能である。なお、 KC1:Eu²⁺試料の場合は、やや大きく 0.62mm と なった。これは試料の密度の影響によるもの と考えられる。

(3) ラジエータを蛍光体中に分散させた場合の実験結果

前述したように、ラジエータを前面に配置 した体系は陽子を発生するのに効果的であ るが、その反面位置分解能が低下する恐れが ある。このため、蛍光体中にポリエチレンを 分散させた体系について評価を行った。評価 では蛍光体として KC1:Eu²⁺を用いた。

蛍光体中に分散されたポリエチレン中の 水素原子と高速中性子の弾性散乱によって 生じた陽子によってエネルギーが付与され るわけであるが、当然分散させるポリエチレンの割合が高ければ高いほど陽子の発生数 が多くなり、付与エネルギーが高くなる。し かし、その一方で、輝尽性蛍光を発生させる 蛍光体そのものの割合が減少するため、蛍光 体に付与されるエネルギーが減少する。

蛍光体中にはポリエチレンの一様に分散 されているものと仮定すると、この蛍光体中 からの輝尽性蛍光強度 PSL(x)は、

$$PSL(x) = K \times \frac{\rho_{PE} x}{F \rho_{KCl} (1 - x) + \rho_{PE} x} \times E_{total}$$

と導出できる。ここに、x は KC1:Eu²⁺蛍光体 の重量比であり、F は

$$F = \left(\frac{dE}{dx}\right)_{PE} \left/ \left(\frac{dE}{dx}\right)_{KC}\right|_{KC}$$

である。また、K は比例定数、 \cdot_{K1} と \cdot_{FE} は KC1: Eu²⁺とポリエチレンのバルクの密度であ り、 E_{total} は試料中に付与される全エネルギー である。

図 12 は、PHITS を用いて計算した試料中に 付与されるエネルギーを、幾つかの粒子ごと に示したものである。図からわかるように、 陽子によるエネルギー付与は KC1:Eu²⁺の重量 比が増加すると共に減少し、従って全エネル ギー付与も減少していくことがわかる。

図 13 は、実際に KC1:Eu²⁺の重量比を変化さ せた試料を製作し、高速中性子照射後輝尽性 蛍光強度を測定した結果である。理論曲線は

図 12 KCI:Eu2+の重量比を変えた場合のエネルギー 付与。

図 13 KCl:Eu2+の重量比を変えた場合の試料の中性 子感度。実線は導出した理論曲線でフィッティング したもの。

上で求めた理論曲線の比例係数Kのみを変化 させてフィッティングした結果である。理論 曲線と実験値は良く一致し、最大のPSL強度 を与えるのはKC1:Eu²⁺の重量比が 0.8 である ことがわかる。

この場合の位置分解能を図 11 と同じよう に評価すると、0.12mm となってかなり分解能 が改善されることがわかる。

(4) 実際のプレートの製作

以上の結果を基に、最終年度にはメーカー に依頼して実際のプレートを製作した。製作 したのは、KC1:Eu²⁺、KBr:Eu²⁺、及び KC1:Eu²⁺ とポリエチレンの混合物(KC1:Eu²⁺の重量比 0.8)である。プレートの仕様は

厚さ:0.6mm±0.1mm

サイズ:100mm×100mm±1mm

である。図 14 にその表面写真を示す。これ らが実際に輝尽性蛍光を示すことを確認す るため、FNS で照射したところ、プレートは 全て輝尽性蛍光特性を示すことを確認でき た。一例として KC1:Eu²⁺とポリエチレンの混 合物の結果を図 15 に示す。実際に高速中性 子照射により輝尽性蛍光を示すことがわか る。

図 14 製作したプレートの写真。10cm×10cmのプレ ートから 1cm×1cmの大きさに切り出したもの。

図 15 KCl:Eu2+とポリエチレンの混合物の高速中性 子照射後の輝尽性蛍光特性。

(4)まとめ

ガンマ線感度の低い輝尽性蛍光体として KC1:Eu²⁺蛍光体及び KBr:Eu²⁺を高速中性子検 出に応用した結果について調べた。ラジエー タを前面に配置した体系では、最大の輝尽性 蛍光出力を与えるポリエチレンシートの厚 さは 14.8MeV 中性子の場合は 3mm であり、 PHITS によるモンテカルロシミュレーション 計算とも一致した。また、ガンマ線感度は無 視できるほど小さかった。また、位置分解能 を向上させるため、蛍光体中にポリエチレン を分散させた体系について調べた。最大の輝 尽性蛍光強度を与えるのは、KC1:Eu²⁺蛍光体 とポリエチレンの混合物では KC1:Eu²⁺蛍光体 の重量比が 0.8 となり、導出した理論曲線と も極めて良く一致した。この場合、位置分解 能は 0.12mm 程度となり、ポリエチレンを前 面に配置した場合より数倍改善された。さら に、これらの結果を基に実際にプレートを製 作した。製作したプレートは実際に輝尽性蛍 光特性を有することが確認できた。これらの プレートは高速中性子測定やイメージング に有用である。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計2件) <u>K. Sakasai,</u> Y. Iwamoto, <u>T. Nakamura, K. Toh</u>, K. Takakura, and C. Konno, "Storage characteristics of KCl:Eu²⁺ phosphors with radiators by irradiation of fast neutrons", 2009 IEEE Nuclear Science Symposium Conference Record (2009) pp.1422-1426. (CD-ROM) (査読なし)

<u>K. Sakasai</u>, Y. Imamoto, <u>K. Toh, T. Nakamura,</u> K. Takakura, and C. Konno, "Storage Characteristics of KBr:Eu²⁺ Phosphors With Radiators by Irradiation of Fast Neutrons", 2010 IEEE Nuclear Science Symposium Conference Record, (2010) pp. 966-970. (CD-ROM) (査読なし)

〔学会発表〕(計3件)

<u>K. Sakasai,</u> Y. Iwamoto, <u>T. Nakamura, K. Toh,</u> K. Takakura, and C. Konno, "Storage characteristics of KCl:Eu²⁺ phosphors with radiators by irradiation of fast neutrons", IEEE Nuclear Science Symposium, Orland, USA, October 28, 2009.

<u>K. Sakasai</u>, Y. Imamoto, <u>K. Toh</u>, <u>T. Nakamura</u>, K. Takakura, and C. Konno, "Storage Characteristics of KBr:Eu2+ Phosphors With Radiators by Irradiation of Fast Neutrons", IEEE Nuclear Science Symposium, Knoxville, USA, November 3, 2010.

<u>坂佐井馨、藤健太郎、中村龍也</u>、高倉耕祐、 今野力、岩元洋介"KC1:Eu²⁺輝尽性蛍光体と ポリエチレン混合物の高速中性子照射特性"、 2011年秋季第72回応用物理学会学術講演会、 山形大学、2011年8月

6.研究組織
(1)研究代表者
坂佐井 馨 (SAKASAI KAORU)
独立行政法人日本原子力研究開発機構・J-PARC センター・研究主幹
研究者番号:00343913

(2)研究分担者 なし

 (3)連携研究者
 中村 龍也 (NAKAMURA TATSUYA)
 独立行政法人日本原子力研究開発機構・ J-PARC センター・研究副主幹
 研究者番号:60354768

藤 健太郎 (TOH KENTARO) 独立行政法人日本原子力研究開発機構・ J-PARC センター・研究副主幹 研究者番号:40344717