科学研究費助成事業(科学研究費補助金)研究成果報告書

平成24年6月5日現在

機関番号:32702 研究種目:基盤研究(C) 研究期間:2009-2011 課題番号:21560371
研究課題名(和文) 歪制御による同一半導体を用いたヘテロ素子構造の研究
研究課題名(英文) Study on relaxed/strained semiconductor layer heterostructures fabricated by ion implantation induced relaxation technique of strained semiconductors 研究代表者 水野 智久(Mizuno Tomohisa) 神奈川大学・理学部・教授 研究者番号:60386810

研究成果の概要(和文):将来の高速CMOS素子を目指したソースへテロ構造(ソース/チャ ネル間のエネルギー差を利用してキャリア速度の増大を実現)として,同一半導体上に緩和/ 歪み層による急峻なヘテロ構造を簡易な方法で初めて実現した.n及びpチャネル用のソース ヘテロ構造は,それぞれ歪み SOI及び SGOI 基板上にそれぞれ部分的に O⁺または H⁺イオン 注入を行い,その反跳エネルギーによって,注入部分の歪み層の埋め込み酸化膜界面滑りに伴い, 歪みを緩和させることにより作製できた.

研究成果の概要 (英文): We have experimentally demonstrated an abrupt source heterostructure (SHOT) with relaxed/strained layers for a future high speed CMOS, using ion implantation technique. n- and p-SHOTs can be easily fabricated by the slip between the strained layer and the buried oxide on strained Si and SiGe layers, respectively, using the recoil energy of O⁺ or H⁺ ions.

交付決定額

		(金額単位:円)
直接経費	間接経費	合 計
1, 700, 000	510,000	2, 210, 000
900, 000	270,000	1, 170, 000
1,000,000	300, 000	1, 300, 000
3, 600, 000	1, 080, 000	4, 680, 000
	直接経費 1,700,000 900,000 1,000,000 3,600,000	直接経費間接経費1,700,000510,000900,000270,0001,000,000300,0003,600,0001,080,000

研究分野 : 半導体工学 科研費の分科・細目 : 電子デバイス・電子機器 キーワード : 電子デバイス・集積回路

1. 研究開始当初の背景

現在のナノ領域での CMOS 素子性能が飽和 しているのは、キャリア速度がソース端での 熱速度やフェルミ速度によって決定されて いるからである.従って、CMOS 素子の高速 化のためには、新たなソース素子構造、所謂 ソースエンジニアリングが必要となってき ている.

我々は、図1に示すようなソース/チャネル ヘテロ構造において、その伝導帯エネルギー

1) p-MOSFET では、図1のように、荷電子 帯にエネルギー障壁が生じるため、正孔のソ ースからチャネルへの高速注入が阻害され

る. 2) 図 2 の SHOT 製造プロセスで示すよ うに、ソース SiGe 層形成時の高ドーズ Ge イ オン注入による半導体基板の欠陥が形成さ れる.3) Geのチャネル領域への拡散に伴っ て、SiGe/歪 Si ヘテロ構造の傾斜化によりキ ャリア速度の高速化が阻害される.4)材料 の違った半導体を用いたヘテロ構造では、素 子加工時のプロセス/加工条件の調整が困 難である. 5) エネルギー輸送モデルを取り 入れたシミュレータを使って、傾斜ヘテロソ ース構造による SHOT 素子の最適化もある程 度,明確になった.しかし,ソースヘテロ界 面でのキャリアの量子効果的偏在, ヘテロ界 面でのエネルギースパイクでのトンネル効 果などを考慮されていないこともあり、キャ リアのチャネルへの注入効率を正確に見積 もることが困難であり, SHOT 素子設計に当 たっては従来のシミュレータには限界があ る.

図1 SHOT 断面図及びバンド図

図 2 SHOT 製造プロセス

2. 研究の目的

本研究の第一の目的は, n 及び p 両チャネル 素子に適用できるソースへテロ素子構造(以 下SHOTと記述)として,歪の制御によって、 同一半導体内においてもヘテロ構造が形成 できることを実証することである.また,第 二の目的は、そのソース/チャネルヘテロ界 面でのエネルギーバンドオフセットによる 高速キャリア注入現象を利用した高速 CMOS 素子の実現にある. そのためには、本 研究の第一段階として、n及びpチャネル素 子においては, それぞれ, 埋め込み酸化膜 (BOX) 上の引っ張り歪 Si (SSOI 基板) 及 び圧縮 SiGe 層(圧縮 SGOI 基板)を用い、ソ ース領域のみ半導体基板の歪を緩和させる ことにより、同一半導体を用いたヘテロ構造 が実現できる. 更に, この SHOT 構造をバリ スティック素子に応用するには、ソースヘテ ロ面のエネルギー差などのデバイスパラメ ータの最適化が必要である.そのために、本 研究の第二段階として、キャリアのチャネル 方向の量子効果的偏在効果などを取り入れ たデバイスシミュレータを用いた研究も提 案する.

3. 研究の方法

(1) 横方向ソースヘテロ構造の研究方法 図 3 及び 4 に, SSOI 基板

(Strained-Si-on-insulator:引っ張り歪み Si 層) 及び SGOI 基板 (SiGe-on-insulator: 圧縮歪み SiGe 層)上に作製されたn及びpチャネル素 子用ソースへテロ素子構造(以下 SHOT と記 述)の断面模式図を示す.ゲート電極(本研 究ではゲート下の歪み観測を行うため SiO₂ をマスクとする)をマスクとして歪み基板へ の部分 O⁺イオン注入を行い, 歪層/埋め込み 酸化膜界面に臨界以上の反跳エネルギーE_R を与えられると、その界面での歪み層に滑り が発生する.従って、O⁺イオン注入された領 域とされない領域の境界で,緩和層/歪み層の ヘテロ構造が実現でき,図(b)のように伝導帯, 及び価電子帯のバンドオフセット AEc 及び △E_Vを形成できる. その結果, ソースヘテロ 端で,キャリア速度の増大Δv(Δv=(2ΔE/m*)^{1/2}: m*はチャネルのキャリアの有効質量) が実現 できる.

今回用いた歪み Si 及び SiGe 層は, それぞ れ引っ張り歪み 0.7%, 及び圧縮歪み 1.1%を 有している. モンテカルロ計算により, イオ ンの反跳エネルギーのピーク位置が歪み層 /BOX 界面になるようにイオン注入加速エ ネルギー条件を決定した. また, 歪み層に O⁺イオン注入後, 高温のポストアニールを 30 分行った. 歪み層の歪み量は, Raman 分光(レ ーザ波長は532nm及び 325nm, ビーム径 1µm) で計測した.

図3 SSOIを用いたn チャネルヘテロ素子

図4 SGOIを用いた p チャネルヘテロ素子

(2) 歪み緩和層の結晶性向上の研究方法

歪み層を緩和し,且つ,結晶性劣化を防止 するには,注入イオンによる反跳エネルギー が歪み層/BOX 界面にピークを持つ急峻な 分布を持ち,歪み層中での反跳エネルギーは 可能な限り低いこと必要である.図5は,モ ンテカルロ計算による各種イオンの反跳エ ネルギー分布の違いを示す.重いイオンほど その分布は広がり,上記条件を満たすには, 最も軽いイオン,即ち,H⁺が最適なイオンで あることがわかる.

今回, 従来の **O**⁺に代わり, **H**⁺を用いた歪 み層の緩和を行った.

図5 各種イオンによる Si 層中の反跳エネル ギー分布のモンテカルロ計算結果.

4. 研究成果

(1) 歪み緩和の物理機構の解明

O⁺ドーズを変化させその反跳エネルギー を変化させ、歪み層の緩和率の依存性を Raman 分光により計測した.図6に SSOI 及 び SGOI の緩和率の歪み層/BOX 界面での反 跳エネルギー依存性を示す.なお、反跳エネ ルギー値はモンテカルロ計算により求めた. 歪み Si,及び SiGe 層もある臨界反跳エネル ギーで急激に緩和することが判明した.特に, 歪み Si 層では,その膜厚を変動させても、そ の臨界反跳エネルギーは同じである.即ち, 緩和率は、普遍的な反跳エネルギー依存性を 持っている.

また,図7に歪みSiの緩和率のポストアニ ール温度依存性を示す.緩和率は、図6同様 ある臨界アニール温度で急激に増大し、その 後は飽和状態になる.即ち、歪み層の緩和に は、イオン反跳エネルギーだけでなく、ポス トアニール工程も必須であることが判明し た.

以上の結果より, 歪み半導体層の緩和は, 次の2段階機構モデルによって説明できる. 1) O⁺イオン反跳エネルギーによって歪み層 /埋め込み酸化膜層間の結合が切断され, 2) その後のアニール工程において, 半導体と BOX 層の熱応力の差によって歪み層が界面 に沿って滑ることにより,緩和が進行すると 思われる.

図6 歪み層(SSOI, SGOI)の緩和率の反跳 エネルギー依存性.

図7 歪み Si 層の緩和率のポストアニール温 度依存性.

(2)横方向ソースヘテロ構造の研究

SSOI 基板に SiO₂マスクをパターニングし, O⁺イオン注入後 950℃のポストアニールを行った.図8に,SiO₂マスク端での緩和率分布 の実測を示す.イオン注入領域の歪みSi は緩 和し,マスク下では歪みが保持されている. しかも,マスク端において,急峻な歪み分布 が実現されている.その結果,当初の目的で ある急峻なヘテロ構造が,今回の緩和/歪み 層で実現できたことが実証された.このヘテ ロ端でのバンドオフセット値は 89meV と見 積もられ,電子はソースからチャネルへの高 速注入が可能であることが判明した.

もう1つ重要な関心事は、ゲート長がナノ 領域においても、ソース/ドレインがイオン 注入により緩和しても、チャネルの歪みの保 持が可能かどうかである.図9は、ストライ プ状のマスク幅中での歪み量の変化の実測 である.マスク長が数10nmにおいても歪み が保持されており、ナノ領域での緩和/歪み ヘテロ構造が可能であることが実証された.

図 8 マスク端における歪み Si 層の緩和率分 布.

図9 ストライプ形状歪み Si 層の歪みのマス ク幅依存性. 右縦軸は, 歪みから求めた緩和 /歪みヘテロ端でのバンドオフセット値AE_c.

(3) 歪み緩和層の結晶性向上の研究

旧来の O⁺イオン法と比較して,新たな H⁺ イオン法における注入領域の良好な結晶性 が実現できたことを述べる.

図 10 は、H⁺イオンとO⁺イオンによる歪み SiGe 層の緩和率のイオン反跳エネルギー依 存性の比較である.H⁺イオンにおいても、歪 み緩和が実現できた.しかも、その臨界反跳 エネルギーはイオン種に依存せず、緩和率は 普遍的な反跳エネルギー依存性を持つこと が判明した.

ここで、イオン注入後の歪み層の結晶化率 R_C は、 W_{HI}/W_H で定義した.なお、 W_{HI} 及び W_H は初期基板の Raman ピークの半値幅、及 びイオン注後の半値幅である.

図 11 は、 R_c と緩和率の相関のイオン種依存を示す.緩和率が 80%以下では両イオンに差はない.しかし、ほぼ完全緩和領域では、 O^{\dagger} イオンでは急激な R_c 劣化が起きるが、 H^{\dagger} イオンではその劣化が抑制されているのが明白である.これは、当初の目論見通り、 H^{\dagger}

イオンによる急峻な反跳エネルギー分布に より(図5),イオン注入による半導体層への ダメージが抑制されたことによる.

図 10 H⁺及び O⁺による歪み SiGe 層の緩和率 の各イオン反跳エネルギー依存性.

図 11 H⁺及び O⁺による歪み SiGe 層の結晶化 率と緩和率との相関関係.

(4) 最適素子構造の提案

以上の研究成果を基に,将来の高速微細素 子構造の提案を行った.

図 12 に、将来の高速素子 SHOT の最適構 造を示した.ドレイン端でのヘテロエネルギ ースパイク形成防止のため、ソース歪み層の 緩和用のイオン注入はソース斜めから行う (図 12 (a)).その後、ソースヘテロ端とソ ース拡散層 pn 接合位置の最適化のため、ソ ース/ドレイン拡散層イオン注入は垂直に 近い角度で行う.その結果、単一の半導体上 に、簡易な方法でソース領域のみ緩和/歪み 層ヘテロを形成でき、高速注入キャリアを持 つデバイスが実現可能である.

図 12 最適 SHOT 構造とその製法.(a) ソー スからの斜めイオン注入法,(b) ソース/ド レイン拡散層の形成.

以上の成果は、国際学会発表4件、国内学 会発表6件、論文掲載9件と、広く国内外で 認められる結果となった.

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計9件)

- T. Mizuno, N. Mizoguchi, K. Tanimoto, T. Yamauchi, T. Tezuka, and <u>T. Sameshima</u>, "Novel Source Heterojunction Structures with Relaxed-/Strained-Layers for Quasi-Ballistic CMOS Transistors using Ion Implantation Induced Relaxation Technique of Strained-Substrates ", Extended Abst. of SSDM, Sendai, p.769 (2009). 査読有
- 2. <u>T. Mizuno</u>, N. Mizoguchi, K. Tanimoto, T. Yamauchi, M. Hasegawa, <u>T. Sameshima</u>, and T. Tezuka, "New Source Heterojunction Structures with Relaxed-/Strained-Semiconductors for Quasi-Ballistic Complementary-Metal-Oxide-Semiconductor

(CMOS) Transistors: Relaxation Technique of Strained-Substrates and Design of Sub-10nm Devices", Jpn. J. Appl. Phys., **49**, 04DC13 (2010). 查読有

- <u>T. Mizuno</u>, M. Hasegawa, and <u>T. Sameshima</u>, "Source Heterojunction with Relaxed/Strained-Layers for Quasi-Ballistic CMOS Transistors", Extend. Abst. ISTESNE, Tokyo, p.66 (2010). 查読有
- 4. T. Mizuno, M. Hasegawa, K. Ikeda, M. Nojiri,

and T. Horikawa, "Abrupt Source Heterostructures with Lateral-Relaxed/Strained Layers for Quasi-Ballistic CMOS Transistors using Lateral Strain Control Technique of Strained Substrates ", Extended Abst. of SSDM, Tokyo, p.45 (2010). 査読有

- T. Mizuno, Y. Moriyama, T. Tezuka, N.Sugiyama, and S.Takagi, "Experimental Study of Single Source-Heterojunction MOS Transistors (SHOTs) for Quasi-Ballistic Regime: Optimization of Source-Hetero Structures and Electron Velocity Characteristics at Low Temperature", Jpn. J. Appl. Phys., 50, 010107 (2011). 査読有
- <u>T. Mizuno</u>, M. Hasegawa, K. Ikeda, M. Nojiri, and T. Horikawa, "Abrupt Lateral-Source Heterostructures with Lateral-Relaxed/Strained Layers for Ballistic CMOS Transistors Fabricated by Local O⁺ Ion Induced Relaxation Technique of Strained Substrates", Jpn. J. Appl. Phys., **50**, 04DC02 (2011). 査読有
- T. Mizuno, M. Hasegawa, and T. Sameshima, "Novel Source Heterojunction Structures with Relaxed-/Strained-Layers for Quasi-Ballistic CMOS Transistors", Key Engineering Materials, 470, pp.72-78 (2011). 査読有
- 8. <u>T. Mizuno</u>, J. Takehi, and S. Tanabe, "Lateral Source Relaxed/Strained Layer Heterostructures for Ballistic CMOS: Physical Relaxation Mechanism for Strained Layers by O⁺ Ion Implantation", Extended Abst. of SSDM, Nagoya, p.839 (2011). 查 読有
- <u>T. Mizuno</u>, J. Takehi, and S. Tanabe, "Postannealing Effects on Strain/Crystal Quality of Lateral Source Relaxed/Strained Layer Heterostructures Fabricated by O⁺ Ion Implantation", Jpn. J. Appl. Phys., **51**, 04DC01 (2012). 查読有
- 〔学会発表〕(計 10 件)
- <u>水野智久</u>, "単一半導体を用いた新ソー スヘテロ構造の検討:(I) 緩和 Si/歪 Si ヘテロ構造",応用物理学会, 2009 年 9 月 10 日,富山大学.
- <u>T. Mizuno</u>, "Novel Source Heterojunction Structures with Relaxed-/Strained-Layers for Quasi-Ballistic CMOS Transistors using Ion Implantation Induced Relaxation Technique of Strained-Substrates", International Conference on Solid State Devices and Materials, 2009年10月8日, 仙台
- <u>水野智久</u>, "単一半導体を用いた新ソー スヘテロ構造の検討:(II): CMOS 用緩 和/歪半導体構造",応用物理学会,2010

年3月17日, 東海大学

- <u>T. Mizuno</u>, "Source Heterojunction with Relaxed/Strained-Layers for Quasi-Ballistic CMOS Transistors", International Symposium on Technology Evolution for Silicon Nano-Electronics, 2010年6月4日, 東京工業大学.
- 水野智久, "単一半導体を用いた新ソー スヘテロ構造の検討(III):急峻な横方 向歪み分布の実現",応用物理学会,2010 年9月16日,長崎大学.
- <u>T. Mizuno</u>, "Abrupt Source Heterostructures with Lateral-Relaxed/Strained Layers for Quasi-Ballistic CMOS Transistors using Lateral Strain Control Technique of Strained Substrates ", International Conference on Solid State Devices and Materials, 2010年9 月 22 日,東京大学.
- 武樋樹里亜,田邊 奨,有馬広記,星野 靖,中田穣治,水野智久,"単一半導体 を用いた新ソースヘテロ構造の検討 (IV):歪みSi層の緩和メカニズム",応 用物理学会,2011年3月26日,神奈川 工科大学.
- <u>水野智久</u>, "単一半導体を用いた新ソースへテロ構造の検討(V):緩和/歪みSiへテロ構造の結晶性",応用物理学会,2011年9月2日,山形大学.
- <u>T. Mizuno</u>, "Lateral Source Relaxed/Strained Layer Heterostructures for Ballistic CMOS: Physical Relaxation Mechanism for Strained Layers by O+ Ion Implantation", International Conference on Solid State Devices and Materials, 2011 年9月28日,名古屋.
- 武樋樹里亜,赤松大夢,阿部勇貴,<u>水野</u> <u>智久</u>, "単一半導体を用いた新ソースへ テロ構造の検討(VI):H⁺イオン注入に よる良好な結晶性の実現",応用物理学 会,2012年3月17日,早稲田大学.

[その他]

ホームページ等

http://www.info.kanagawa-u.ac.jp/~mizuno/index .html

6. 研究組織

```
    (1)研究代表者
水野 智久(MIZUNO TOMOHISA)
神奈川大学・理学部・教授
研究者番号:60386810
    (2)研究分担者
鮫島 俊之(SAMESHIMA TOSHIYUKI)
東京農工大学・共生科学技術研究院・教授
研究者番号:30271597
```