科学研究費助成事業(科学研究費補助金)研究成果報告書

平成 24年 6月 1日現在

機関番号:32678
研究種目:基盤研究(C)
研究期間:2009~2011
課題番号:21560417
研究課題名(和文)情報保護を目的とした環境適合型透明薄型電波吸収体の開発
研究課題名(英文) Development of environmental agreement type transparent thin microwave absorber to protect information
研究代表者
岡野 好伸 (OKANO YOSHINOBU)
東京都市大学・知識工学部・教授
研究者番号:10339533

研究成果の概要(和文):本研究では,情報保護を目的とし無線通信の電波の不要散乱を抑 止するための,オフィス・住居内の実情に適合させやすい透明超薄型電磁波吸収体の開発 を行った。具体的には,近年,入/退室管理によく利用される RFID システムを研究目標 に据え,この吸収体の誤動作抑止効果を実際の現場に近い環境において検証した。その結 果,透明素材の利用により,良好な光透過性を確保しつつ,吸収目標周波数に対し約 $\lambda/65$ 程度の厚みで,高い反射減衰量を得られる吸収体を実現させた。また RFID -Tag 誤認証に 対しては、シールド板による対策は効果が低く、電磁波吸収体壁の適用こそが Tag 誤認証 抑圧に効果があることを実証した。

研究成果の概要 (英文): In this research, ultra thin microwave absorber as an improvement technology of the multi-path environment for UHF-RFID system is reported. Additionally, a transparent feature is given to this absorber. Because the microwave absorber should not increase the blind area of the observation camera in the region for which UHF-RFID system is used (around the entrance gate of offices or warehouses). In an actual warehouse, the verified result about the effectiveness of tag identification probability improvement with this absorber is also presented.

			(金碩平位, 円)
	直接経費	間接経費	合 計
2009 年度	2, 700, 000	810, 000	3, 510, 000
2010 年度	800, 000	240, 000	1, 040, 000
2011 年度	200, 000	60, 000	260, 000
年度			
年度			
総計	3, 700, 000	1, 110, 000	4, 810, 000

交付決定額

研究分野:電磁波工学

科研費の分科・細目:電気・電子工学,通信・ネットワーク工学 キーワード:情報保護,環境適合,電波吸収体

1. 研究開始当初の背景

現在社会問題化しつつある無線携帯通信 機の使用に関して情報保護や犯罪予防の観 点から利用者に安全で適正な使用環境を提 供することが必要であった。さらに,近年普 及が期待される RF-ID(無線認証)用タグに対 して,誤認証を抑圧し物流効率を向上させる 多周波数対応透明薄型電波吸収体の実用化 が急がれていた。

(入病出告,四)

2. 研究の目的

本研究は、UHF 帯を目標周波数とした無 線通信の情報漏洩を防止するための透明薄 型電波吸収体の実用化を目的とする。

3. 研究の方法

目視や監視カメラの死角増大を回避する ため、電波吸収対に光透過性を付与すること を試みた。このためには、従来のフェライト 材や炭素含有材料は一切使用できない。この 目標を達成するべく、人工高インピーダンス 膜の技術を利用、その実用化を図った。

4. 研究成果

(1) 概容

人工高インピーダンス膜の利用により, Salisbury スクリーンのような抵抗膜や損失 性誘電体を使用せずに,自由空間インピーダ ンスに整合可能な電磁波吸収体を実現させ た。さらに,その厚みをλ/65以下に抑圧する ことに成功した。また,構成材料に透明性の 高い材料を利用することで,電磁波吸収体に 光透過性を付与することにも成功した。以下 の図1に具体的な形状を示す。

(2) 吸収性能

図 2 (a)には θ = 5°における試作吸収体の 吸収特性評価結果をθ = 0°の場合の解析値と 比較して示した。測定に際しては、送受信用 アンテナとして対数周期アンテナ (Schwarzbeck 社製, USLP9142)2 基, およ び VNA (ADVANTEST 社製, R3767CG) を 使用した。測定では時間領域測定機能を利用 し、アンテナ冶具などからの反射は極力排除 し、吸収体からの反射のみを測定するように 配慮されている。また、UHF-RFID システ ムにおいては円偏波が使用されているため, 特に斜め入射における評価では偏波方向に よる吸収特性変化を明確にするべく TE 波と TM 波の双方に関して吸収特性を評価した。 測定サイト内部では測定アンテナと被測定 対象との距離は3mに設定されている。しか しながら,正面入射に近い状態では,送受信 アンテナが接近し、時間領域測定法によって も相互結合の影響が排除できなくなるため, 測定においてはθ = 5°を正面入射の近似値と して示している。同図より,最大吸収周波数, 最大吸収量共に良好な一致を示している。こ れによりθ=5°の測定値が正面入射の近似値 として利用可能であることが確認された。さ らに、UHF-RFID で利用される帯域内にお いて反射係数が-20 dB以下となっており、十 分な反射減衰が生じていることが確認され た。

図 2(b) には TE 波の斜め入射に対する吸 収特性を測定により評価した結果を示す。TE 波入射の場合,入射角θが 45°までは,最大 吸収周波数,最大吸収量共に大きな変移を示 さない。またθ=60°においても最大吸収周波 数に若干の変移は見られるが, UHF-RFID 帯域内の反射係数は-10dB以下を維持し,吸 収特性の大幅な劣化は確認されなかった。一 方、TM 波入射の場合、 θ = 45°までは吸収性 能が得られるが、 θ = 60°においては、吸収性 能が大幅に劣化してしまうことが確認され た。これは、前章で述べたように、パッチ構 造体の共振が電磁波吸収現象を発現させて いることから、これを励振するのに必要な、 パッチ素子に平行な電界成分が維持されて いる TE 波入射においては、浅い入射角に対 しても吸収性能が発揮されるが、TM 波入射 では
θの
増大により
パッチ素
子励振の
ための 電界成分が急激に減退するため吸収性能が 劣化したと考えられる。ただし、実際に使用 される円偏波は、TE 波と TM 波の合成波で あるので、これらのうち何れかに十分な減衰 が与えられれば、円偏波総体の反射は十分抑 圧されると考えられる。

また、図 3 には実際の試作された透明薄型 電波吸収体の全容を示す。幅 x 高さ x 厚さ=1 m x 2 m で,厚さ 5mm のポリカーボネート 樹脂が使用されている。ポリカーボネート樹 脂の比誘電率は概ねεr=3.0 程度である。また 導電率はσ=0.0005 S/m 程度である。同図に 示した吸収体は、極めて高い透明度を示し、 十分な実用性能を有すると考えられる。パッ チ素子および反射板は,厚み100 mmのPET フィルム上に構成されたアルミニウム微細 メッシュにより構成されている。同図より試 作吸収体が高い光透過性を有することが確 認できる。

図3試作電波吸収対の概容

(3) 実証試験結果

本節では、十分な吸収性能を有することが 前節の評価結果から明確になった透明超薄 型電磁波吸収体を、UHF-RFIDシステムによる 入庫/出庫管理ゲート周辺に展開した場合 のTag 誤認証抑圧効果を実際の倉庫内で検証 した結果を示す。図4(a)には、実際の倉庫 内に仮設された UHF-RFIDシステムによる入 庫/出庫管理ゲートを、図4(b)にはゲート 周辺を0.5 m間隔に区割りしたTag 配置点を 示す。また、表1には検証に使用した機器の 仕様をまとめて示す。

倉庫の床面,壁面は鉄筋コンクリート製, 天井高さは6mでスチール製波板によって構 成されている。リーダ/ライタアンテナの床 面からの高さは1mに設定されている。また, アンテナは2m離して対向するように配置さ れている。床面を 0.5 m 間隔の格子状にマッ ピングし、各格子点上1mの高さにTagアン テナが内蔵されたカードを配置した。Tag に はメアンダ・ダイポールアンテナが使用され ている。また, Tag 内蔵カードは, 送受信電 磁波を擾乱させる懸念の低いポロエチレン 樹脂製のハニカム板に設置された状態で床 から1mの高さに固定されている(図4(a) 中の青色のボード)。この Tag に対し, リー ダ/ライタアンテナから認証を 20 回繰り返 し,認証成功回数を計測することで,その点 における Tag 認証確率を測定する手法を採っ た。

図 5,6には、Tag を床面に垂直に設置した 場合と、水平にした場合における Tag の認証 確率の分布を実測した結果を示す。また、各 図ともにリーダ/ライタアンテナによるゲ ート周辺に(a)何も配置しない場合、(b)単純 な導体板によるシールド壁を配置した場合、 および(c)電磁波吸収体板を配置した場合、 について Tag 認証確率分布の比較を行った。

(b)観測点配置図

図4 実証試験設定

表1 使用実験機材の概容

Equipment	Specifications	Ability	
	Ratings output	30 dBm (1W)	
Reader/writer	Communication protocol	Generation-2	
	Transmission rate	Up link : 40 kbps Down link : 50 kbps	
	Length	5 m	
Cable	Characteristic impedance	50 Ω	
	Loss	2.5 dB	
Antenna	Туре	Microstrip patch	
	Frequency band	915 - 928 MHz	
	VSWR	1.5 or less	
	Polarization	Left-hand	
	Gain	8.5 dBi	
	Axial ratio	3 dB or less	
	Half-power beamwidth	65°	

図 5 Tag を垂直に配置した場合の電波漏洩抑 止効果

図 6 Tag を水平に配置した場合の電波漏洩 抑止効果

シールド壁および吸収体壁の設置に関して はどちらの場合も、1 m x 2 m のプレートを リーダ/ライタアンテナの後方20 cm の位置 に片側3枚,左右合計6枚配置して検証を行 った。図5(a)から明らかなように、UHF-RFID ゲートの周辺には、かなり遠方まで Tag 認証 確率の高い領域が広がっている。この結果は, 認証ゲート周辺に多くの Tag 誤認証領域が存 在することを意味している。一方,認証ゲー ト周辺に電磁波の散乱を抑止するために導 体シールド板を配置した図 5(b) のケースで は、ゲート背面領域の Tag 認証確率は大幅に 抑圧されている。しかしながら、X 軸方向お よびシールド板端部近傍では、図 5(a)の場 合以上に Tag 認証確率の高い領域が遠方まで 拡大している。これは, 導体シールド板が導 波路として働き,電磁波の散乱を助長する可 能性があることを示唆している。これに対し, 図 5(c) に示す電磁波吸収体壁を使用した場 合は, X, Y 軸両方向への高認証確率領域の拡 散は大幅に抑止されている。ゲート開口部方 向に若干の高認証確率領域の広がりが見ら れるが,これは吸収体背面の反射板端部に誘 起した電流による散乱と考えられる。これら は,吸収体を支持するフレーム部に損失性材 料を用いれば容易に抑圧可能である。

図6に示す, Tag が水平に配置された場合の認証確率分布も概ね図5と同じ傾向を示している。ただし,水平配置の場合,図6(b)に示すように,導体シールド板のゲート周辺への展開は, Tag 誤認証抑圧の観点からは効果が低いと考えられる。一方,吸収体壁を使用した図6(c)の場合は,十分な Tag 誤認証抑圧効果が得られている。

5. 主な発表論文等

(研究代表者,研究分担者及び連携研究者に は下線)

〔学会発表〕(計1件)

①<u>岡野好伸</u>, "Development of ultra thin visible light permeable EM-absorber for UHF-RFID System", Asia-Pacific Microwave Conference 2011 (オーストラ リア, メルボルン)

6. 研究組織

(1)研究代表者

岡野 好伸(OKANO YOSHINOBU)東京都市大学・知識工学部・教授研究者番号:10339533