科学研究費助成事業(科学研究費補助金)研究成果報告書

平成24年5月15日現在

機関番号:32644
研究種目:基盤研究(C)
研究期間:2009~2011
課題番号:21560755
研究課題名(和文) 荷電粒子線とナノ操作を利用した極限反応場での非平衡ナノ構造の形成と物性計測
研究課題名(英文) Creation and characterization of non-equilibrium nanostructured materials using charged particle beam irradiation and nanoprobe manipulation 研究代表者 葛巻 徹(KUZUMAKI TORU) 東海大学・工学部・准教授 研究者番号: 50396909

研究成果の概要(和文):本研究では微小領域における電気的・機械的性質の評価を可能にする ナノ材料試験機を作製し、これを走査型電子顕微鏡(SEM)等、用途に応じて多様な顕微鏡と組み 合わせることにより、構造と各種物性との関係を多面的に解析できるナノ材料試験システムの 構築に取り組んだ。作製したナノ材料試験機の性能評価及びFIB内での微細加工とSEM内引張 試験の検討を行い、主にダイヤモンドライクカーボン(DLC)膜の機械的性質について評価した。

研究成果の概要(英文): The central aim of this study is the development of a nano-materials testing system (NTS) that consists of a nanomaterials tester and a scanning electron microscope, a transmission electron microscope or a focused ion beam. By using the NTS, tensile testing of a diamond-like carbon (DLC) thin film was carried out. The obtained results demonstrated that the NTS would be one of the effective testing methods to evaluate the mechanical characteristics of DLC thin films.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2009 年度	2, 200, 000	660, 000	2, 860, 000
2010 年度	800, 000	240, 000	1, 040, 000
2011 年度	700, 000	210, 000	910, 000
年度			
年度			
総計	3, 700, 000	1, 110, 000	4, 810, 000

研究分野:工学 科研費の分科・細目:材料工学、材料加工・処理 キーワード:ナノプロセス

1. 研究開始当初の背景

研究代表者はこれまでの研究で、一本のカ ーボンナノチューブ(CNT)の物性を定量的に 評価するため、TEM内でのナノプローブ操作に よるCNTのヤング率、電気伝導特性の計測に取 り組んできた。この研究では、原子間力顕微 鏡(AFM)用カンチレバーを装備したユニット を作製し、単独のCNTを変形させた。CNTにか かる荷重は、カンチレバーアームに生じたた わみ量をTEMレベルで観察・計測することで定 量化に成功した。一方、TEM内でCNTの電界電 子放出現象をその場観察し、高電界印加によ り、CNT先端に堆積した一個の炭素クラスター の構造が変化し、一本のひも状組織を形成す る様子が観察された。この構造変化は電子源 材料としての劣化を意味する事から、CNTを電 子源とする場合、寿命に関する評価が不可欠 である事を示している。しかし、この構造変 化は見方を変えると、電界制御による一種の ナノ加工であるとも言える。研究代表者はこ れら一連の研究成果から、TEMを原子レベルで 構造観察が可能な材料試験機として利用する ことで、TEMの利点を生かした分析・計測・加 工により反応の素過程の観察や準安定相の物 性評価など新しいタイプの材料研究が行える と考えた。

2. 研究の目的

本研究では、透過型電子顕微鏡(TEM)内で のナノプローブ操作技術を背景に、通常の材 料製造法では不可能な、新規物質・材料の探 索と創製及びその場物性計測に取り組む。具 体的には、各種材料試験が可能なナノプロー ブ試料ホルダーを作製し、これを TEM や集束 イオンビーム加工装置(FIB)で使用すること で TEM・FIB をナノ組織の観察・加工が可能 なナノ材料試験システムとして機能させる。 電子・イオン等の荷電粒子線照射及びナノブ ローブ操作により、局所領域に高電界、高 温・高圧力等の極限反応場を実現し、ナノ構 造物の形成や加工・変形・破壊の動的過程に 現れる非平衡構造の解析を行う。同時に、非 平衡ナノ構造物の機械的・電気的特性のその 場計測から新奇物性の発現に関する基礎的 知見及び新規物質・材料の設計に関する指針 を得る事を目的とする。

3. 研究の方法

(1) 多目的材料試験用ナノプローブ試料ホル ダーの製作

本研究では多目的材料試験用ナノプローブ 試料ホルダーの製作が最重要課題である。ホ ルダーの作製においては日立製作所製 TEM(HF-2200)及びFIB(FB-2000A)に対応した 設計をした。本研究で作製する多目的材料試 験ホルダーは固定ステージと円筒型圧電素 子駆動による移動ステージで構成され、両ス テージ間は電気的に絶縁されている。固定ス テージ側には測定用試料、移動ステージ側に は市販のAFM用カンチレバーや針状プローブ を搭載して各種物性評価実験を実施する。ま た、様々な試料形状に対応するため、移動ス テージ側への針状プローブの固定や、固定ス テージと移動ステージの橋渡しによる薄片 状試料の引張試験が可能なように各種アタ ッチメントを作製する。本ホルダーの作製は、 これまで研究代表者が日本電子製 TEM(JEM-2010F)仕様のホルダーを設計・製作 した経験を生かした新設計である。製作は外

部業者に依頼して実施した。

(2)多目的材料試験用ナノプローブ試料ホ ルダーの荷重検出部の作製

荷重検出部の作製において最も重要な点 は、板バネの作製である。一般的なバネ材料 数種類について検討したが、本試験装置の使 用環境が TEM や FIB 等の高真空中であること から、材料としてガスの放出が少ないこと、 引張強さ及び耐摩耗性に優れること、さらに、 加工性、コストなどを考慮してリン青銅を選 択した。板バネの厚さの設定は荷重検出機構 の性能及び移動ステージの剛性に関わる重 要な項目である。本研究では両者のバランス を考慮して、板厚 0.3 mm と設定した。板バ ネの両面に歪みゲージを合計 4 枚貼り付け、 板バネに生じるたわみを電気信号として検 出し、歪みゲージセンサー(KYOWA PCD-300B) を介してデジタルデータとして記録する方 式を構築した。

(3) 荷重校正

0.01~1 N の重りを用いて荷重検出機構の 実荷重校正を行った。0.01~1 N の荷重校正 用の重りは電子天秤を使用して小数点以下 5 桁で調整した。荷重校正時の計測はデータ取 り込み周波数 5kHz で計測した。

4. 研究成果

(1) ナノプローブ試料ホルダーの作製 本研究で使用したナノ材料試験機をFig. 1、 2に示す。この試験機は試料ホルダー先端部 に固定ステージとモーター及び圧電素子駆 動による可動ステージで構成されており、 両ステージ間は電気的に絶縁されている。

Fig. 1 A manipulator with a load detection function.

Fig. 2 A manipulator tip (a) and various terminals (b).

また、可動ステージ側には歪みゲージを貼 り付けた板バネを装着し、試料に負荷を与 えた時に生じる板バネの歪を電気的な信号 として検出する機構を備えており、これに より荷重測定を行う。最大測定荷重は約200 g、荷重測定分解能は10⁵Nである。

(2) 引張試験

本研究で作製したホルダーの引張試験機 としての機能を確認するため、アルミニウム (A1、純度 99.5%、厚さ約 10 μ m)の箔状試料 を標準試料として用いた。JIS 規格 K-7113型 1号試験片に準拠した形状の試験片を作製し た。引張速度は 10 μ m/sec とし室温で引張試 験を行った。荷重校正で得られた歪みと荷重 との関係を Fig. 3 に示す。最小二乗法によ る近似線は Y=1.4X であった。このデータを

Fig. 4 Aluminum specimen before (a) and after (b) tensile test

Fig. 5 Stress-strain diagram of aluminum 基に、0.01Nより微少な荷重は外挿して求め

た。本ホルダーに A1 試料を取り付け、引張 試験を行った。 Fig. 4(a)、(b)に引張試験 前後のホルダー先端部の写真を示す. A1 試料 は適正な位置で破断していることが確認で きる。Fig. 5 に応力-歪み(S-S)線図の一例 を示した。引張強度は約 80~120 MPa, ヤング 率は約 20~40GPa の値を得た。ヤング率は文 献値と比較して小さい値を示したが、本ホル ダーが試験機として機能していることが確 認できた。本実験から、微小サイズ試料の機 械的性質の評価は, 試料のサイズ効果や欠陥 の影響、また、試料の取り付けに十分注意す る必要があることが示唆された。次に応力検 出部の改良や TEM・FIB 内で材料試験を実施 するためのナノ材料計測システムの最適化 へと研究展開した。

(3) ナノ材料試験システムの構築

本研究では第一に走査型電子顕微鏡(SEM) との組み合わせでシステム化することに取 り組んだ。SEM とのシステム化においては試 料ホルダーを導入するポートを作製する必 要がある。本研究では日本電子製 JSM-5600LV に試料ホルダーを導入するためのポートを 新規に作製し、Fig. 6 に示したようにシステ ム化した。本システムではタングステンワイ ヤーを試料として SEM 内での引張試験及び波

Fig. 6 Schematic illustration of the experimental setup of the nanomaterials testing system (a) and photographs of the system (b)

面観察を行った。その結果、S-S 曲線及び破 断面の観察が行えた(Fig. 7)。

Fig. 7 SEM image of the fractured surface of a tungsten

wire

(4) ナノ材料試験システムによる DLC 薄膜の機械的性質の評価

<研究の目的>

本研究では、ナノ炭素薄膜であるグラフェ ンに注目し、本試験システムを利用した非晶 質炭素薄膜の応力誘起変態によるグラフェ ン等の高機能炭素薄膜の形成、及び、新奇物 性を備えた非平衡構造の発現を目指してい る。具体的には非晶質炭素薄膜に工業材料と して広く応用が期待されているダイヤモン ドライクカーボン(DLC)薄膜を出発材料とし て使用し、加熱しながらの引張応力印加によ る非晶質からの構造変化とそれに起因する 各種物性の計測を試みるものである。本研究 で使用するナノ材料試験機は独自に作製し たロードセルを内蔵しており、これが極微少 領域の荷重を適正な値として検出している かをあらかじめ実験的に評価した上で、実験 条件等の最適化を図る必要がある。そこで本 実験では DLC 薄膜単体を試料とする引張試験 を SEM 内で実施し、破断過程のその場観察と 応力-歪み曲線の計測を試み、既存の計測機 器によるデータと比較しながら本試験シス テムの有効性について検討した。

<実験方法>

DLC 薄膜はタングステン箔(純度 99.95 %, 厚さ 0.035 mm)を基板としてパルスプラズマ 化学気相成長法により成膜を行った¹⁾。DLC 薄膜の成膜は原料ガスにアセチレンを用い、 ガス流量 20 sccm、 圧力 3 Pa でバイアス電圧 を-5.0 kV とした。今回はパルス電源の周波 数を変えることで条件を分け、電極周波数を 2 kHz、14 kHz としてそれぞれ 90 min、45 min の合成時間で2種類の試料を膜厚1µmとし て作製した。成膜した DLC 膜の構造解析はラ マン散乱分光分析法(NSR-1000, JASCO)によ って行った。Fig. 8(a)にタングステン箔上 に成膜した DLC 薄膜を示す。またその試料を 機械的に曲げることによって剥片化させた ものを Fig. 8 (b) に示す。剥片化させた DLC 薄膜はナノ材料試験機の試料ホルダーに接 着剤で取り付けた。その後、試験機本体を独 自に製作したアタッチメントポートから SEM の試料チャンバー内に導入した。

DLC 薄膜の引張試験は引張速度を約 30 μm/s として SEM 内で行った。SEM 観察時の 加速電圧は 15 keV とした。引張試験による S -S 曲線は歪みゲージアンプ (PCD-300B, 共 和電業)を介して得られた荷重 – 変位曲線か ら算出した。ナノインデンテーション試験は PICODENTER HM-500 (Fischer Instruments K.K.)を用いて DLC 薄膜の硬さ とヤング率の測定を行った。最大荷重を 0.1 mN、付加時間を 10 sec、除荷時間を 10 sec、 試験回数は 80 回と条件を設定し試験を行っ た。

<結果>

本実験で合成した薄膜はラマン測定によ

Fig. 8 Photographs of (a) a DLC film deposited on a

tungsten substrate and (b) the film was separated

from the substrate by bending the specimen.

り、1550cm⁻¹付近にブロードなピークを持ち、 1400cm⁻¹ 付近にわずかなショルダーのある非 対称なスペクトルを示した。このスペクトル は硬さや耐摩耗性などで特性評価された DLC 薄膜²⁾のそれと良い一致を示した。Fig. 9(a)、 (b)に Sample A の引張試験の試験前、試験後 の SEM 像を示す。Fig. 9(a)に矢印で示した クラックが観察された。引張応力を試料に印 加した際、DLC 薄膜はクラックの先端を起点 として脆性的に破壊した。Fig. 10(a)に DLC 膜の引張試験によって得られた S-S 曲線を 示す。S-S曲線から、引張強度と歪みはそれ ぞれ約 420 MPa、約 0.6 %と求められた。DLC 薄膜の S-S 曲線において引張試験初期の段 階でゆるやかな立ち上がりが見られた。これ は、ナノ材料試験機のモーター駆動部のバッ クラッシュや試料ステージの剛性などによ るものと考えられる。このため、実質的な DLC 薄膜の S-S 線図としては Fig. 10 中の点線

Fig. 9 SEM image of the DLC film (a) before and

(b) after tensile test.

で示した挙動をとると考えられる。この補正 により実質的な歪み量は約 0.4 %と考えられ る。さらに直線の傾きから DLC 薄膜のヤング 率は約 110 GPa と見積った。この値は DLC 薄 膜のヤング率としてこれまでに報告されて いる値と近い値である³⁾。本実験において考 慮すべき点は剥片化させた DLC 薄膜の機械的 な特性が基板上に成膜された時のものと異 なる可能性があることである。基板上に合成 された DLC 薄膜には残留応力が生じており、 残留応力が硬さに寄与していることが報告 されている⁴⁾。本実験では、基板上に成膜し た DLC 薄膜に対してナノインデンテーション 試験を行った。ナノインデンテーション試験 による硬さとヤング率の値は、それぞれ約12 -20 GPa、約85-120 GPa であった。これら の実験結果から引張試験とナノインデンテ ーション試験によるヤング率の値がほぼ-致しており、タングステン基板からの膜の剥 離が容易であったことを考慮すると、残留応 力の影響はほとんどなく引張試験において DLC 薄膜本来の機械的性質の計測が行えたと 判断された。DLC 薄膜の合成条件のうち電極 周波数を 2 kHz から 14 kHz へと変化させて 作製した DLC 薄膜の代表的な S-S 曲線を Fig. 14 に示した。Sample B では、破壊強度は約 400 MPa、歪は約 0.23 %であり、S-S 曲線 から求められるヤング率は約160 GPa であっ た。電極周波数2 kHz で作製した場合と比較 して、歪み、ヤング率共に高くなっている。

Fig. 10 Stress-strain curves of the DLC film. The

dotted line indicates the correct S-S curve.

一般に DLC 薄膜合成時の電極周波数を高くす ると膜質が硬くなる傾向にあることが報告 されている²⁾ "。本実験で得られた結果は、そ の傾向を支持するものであると考えられる。 しかしながら、現時点では各試料の測定デー タ数が 2、3 点と少なく、得られたデータが DLC 薄膜の機械的性質の本質的な違いを示す ものであるか否かについては今後、さらに検 討する必要がある。一方、クラックがみられ ない DLC 薄膜の破断は複雑な破壊組織を示し ており、破断面周辺部には多数のクラックが 存在している。この時の S-S 曲線は適正な データとして計測できなかった。DLC 薄膜な ど、脆性的な破壊挙動を示す素材の引張試験 では切り欠きを入れるなどの試料形状の調 整が不可欠である。

<参考文献>

- N. Ohtake, T. Saito, Y. Kondo, S. Hosono, Y. Nakamura and Y. Imanishi., Jpn. J. Appl. Phys., **34** (2008) 1406
- S. Fujimoto, H. Akasaka, T. Suzuki, N. Ohtake and O. Takai., J. Appl. Phys., 49 (2010) 075501
- A. Grill., Diam. & Relat. Mater. 8 (1999) 428
- S. Zhang, H. Xie, X. Zeng and P. Hing,. Surface and coating technology 122 (1999) 219

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計2 件)

 K. Torigoe, H. F. Tanaka, K. Yonenaga, H. Ohkochi, M. Miyasaki, R. Sato, <u>T.</u> <u>Kuzumaki</u>, K. Yoshida, T. Yoshida, Mechanisms of collagen fibril alignment in tendon injury: from tendon regeneration to artificial tendon, J. Orhop. Res. 査読有り, 29, 2011, pp. 1944-1950

② <u>T. Kuzumaki</u>, Y. Obara, Y. Ishiyama, R. Sato, M. Takashima, N. Ohtake, Tensile strength of DLC films evaluated by a nanomaterials testing system, Diam. & Relat. Mater. 査読有り, 25, 2012, pp. 1-4

〔学会発表〕(計8件)

- 佐藤亮太、<u>葛巻 徹</u>、鳥越甲順、ナノ材料 試験システムを用いた膠原線維の応力自 己組織化現象の定量解析、第59回応用物 理学関係連合講演会、2012年3月17日、 東京
- 急越甲順、佐藤亮太、<u>葛巻 徹</u>、腱分泌物 tendon gel から人工腱を開発、第 117回日本解剖学会総会、2012年3月26日、 東京
- ③ 飯島 徹、林 靖彦、佐藤亮太、<u>葛巻 徹</u>、 Spinnability of rapid grown carbon nanotube forests、第 21 回日本 MRS 学術 シンポジウム、2011 年 12 月 20 日、横 浜
- ④ 石山義行、小原佑記、<u>葛巻 徹</u>ナノ材料 試験システムによる DLC 薄膜の引張強 度評価、第 25 回ダイヤモンドシンポジ ウム、2011 年 12 月 8 日、つくば
- ⑤ 秋田悠太、竹内健人、<u>葛巻 徹</u>、CNT 紡 績糸形成時の荷重計測、第 25 回ダイヤ モンドシンポジウム、2011 年 12 月 8 日、つくば
- ⑥ Y. Obara, Y. Ishiyama, R. Sato, M. Takashima, N. Ohtake, <u>T. Kuzumaki</u>, Tensile strength of DLC films evaluated by nano-materials testing system 、 International Conference on New Diamond and Nano Carbons 2011、 2011 年 5 月 17 日, 松江
- ⑦ 石山義行、小原佑記、<u>葛巻 徹</u>、 ナノ材料試験システムを利用したナノ カーボン薄膜の機械的特性の評価、第 24 回ダイヤモンドシンポジウム、2010 年 11 月 18 日、東京
- <u>
 葛巻</u> 徹、大竹尚登、ナノ材料試験シス テムによるカーボンナノチューブ/樹脂 複合体の機械的性質の評価、第70回応 用物理学会学術講演会、2009年9月10 日、富山

6. 研究組織

東海大学・工学部・准教授 研究者番号:50396909