科学研究費助成事業(科学研究費補助金)研究成果報告書

平成24年 5月25日現在

機関番号:13201			
研究種目:若手研究(A)			
研究期間:2009~2011			
課題番号: 21684020			
研究課題名(和文)角度分解熱膨張測定による強相関電子系の研究			
研究課題名 (英文) Study of strongly correlated electron systems by means of			
angle-resolved thermal expansion measurements			
研究代表者			
田山 孝(TAYAMA TAKASHI)			
富山大学・大学院理工学研究部・准教授			
研究者番号:20334344			

研究成果の概要(和文):

異方的超伝導、多極子秩序やいわゆる「隠れた秩序」などの新奇な秩序状態を探る新たな研 究手段として、230mKから 40Kまでの温度範囲における磁場角度分解熱膨張測定装置を開発し た。開発した膨張計では、膨張計の取り外しをせずに試料交換を簡単に行うことができ、どの ような形状の試料も測定可能である。膨張計の相対感度は 1mmに対してΔl/l=10⁻¹⁰より良く、 高感度である。この装置を用いて行った 2 つの強相関電子系HoSbとCeRu₂Al₁₀の実験結果につ いて報告する。

研究成果の概要(英文):

To investigate novel ordering such as unconventional superconductor, multipole ordering, and hidden order, we developed an angle-resolved magnetostriction measurement system in the temperature range from 230mK to 40K. The dilatometer developed here allows a easy mounting of the sample without removing the dilatometer, and the sample shape is unimportant for the measurements. The relative sensitivity is better than $\Delta l/l=10^{-10}$ for l=1mm. Applications to this system on the strongly correlated electron systems HoSb and CeRu₂Al₁₀ are presented.

			(金額単位:円)
	直接経費	間接経費	合 計
平成21年度	16, 800, 000	5, 040, 000	21, 840, 000
平成22年度	2, 200, 000	660,000	2, 860, 000
平成23年度	2, 200, 000	660,000	2, 860, 000
年度			
年度			
総計	21, 200, 000	6, 360, 000	27, 560, 000

交付決定額

研究分野:数物系科学

科研費の分科・細目:物性Ⅱ

キーワード:強相関電子系,熱膨張,磁歪、超伝導、多極子秩序

1. 研究開始当初の背景

近年、強相関電子系の異方的超伝導ギャッ プのノード構造を探る実験手段として熱伝 導や比熱の磁場角度依存性の測定が大きな 成果をあげている。しかし熱伝導で得られた 結論と比熱で得られたものが一致しないケ ースがある。このような場合、別の物理量の 磁場依存性の情報があると問題解決に役立 つことが期待される。また磁場角度分解物性 測定は超伝導の研究だけでなく、希土類元素 やアクチノイド元素を含んだ化合物で観測 される多極子秩序や、いわゆる「隠れた秩序 状態」などの新奇な秩序状態を探る有効な実 験手段としても期待される。

2. 研究の目的

新たな磁場角度分解の物性測定装置とし ての熱膨張(磁歪)の磁場角度分解装測定置 の開発と、その強相関電子系へ応用である。

3. 研究の方法

(1) 高感度膨張計の開発

熱膨張の測定法としては様々な方法があ るが、本研究では測定感度が良いキャパシタ ンス法を用いた。通常、この方法では試料長 の変化を平行板コンデンサーの電気容量の 変化として測定し、測定する方向の試料の両 端面を精度よく平行に加工する必要がある。 そのため、加工が困難な小さな試料や柔らか い試料の測定は容易ではない。また一つの単 結晶試料で様々な方向を測ることも難しく、 試料依存性の大きい物質の測定にも適して いない。

そこで本研究では、これらのキャパシタン ス法の問題を克服するため、平行板コンデン サーの可動電極は試料に直接固定するので はなく、8本の燐青銅線で吊るようにした。 そして試料はこの可動電極に接触させるだ けで、試料の伸び縮みによって可動電極は固 定電極と平行性を保ったまま動くようにし た。このような構造によって、任意の形状を もつ試料の測定や、一つの単結晶試料で様々 な方向の測定が可能となった。またこの膨張 計では、冷凍機から膨張計を取り外さなくて も試料交換をすばやく行うことができ、作業 を効率的に行えるようになった。膨張計の相 対感度については、試料長 1mmに対して **Δl/l=10**⁻¹⁰より良い高感度を実現することが できた。

(2) 角度分解熱膨張測定装置の開発

角度分解熱膨張測定システムは、主にキャ パシタンス式膨張計、スプリットペア型超伝 導マグネット(米国 Cryomagnetics 社製)、 ソープ式ヘリウム3冷凍機(英国 Oxford 社 製, Heliox)、冷凍機用ローテーターから構成 した。ヘリウム3冷凍機をローテーターによ って精密に冷凍機の軸周りで回転させるこ とにより、試料に印加する磁場方向を水平面 内で連続的に変化させることが可能である。 図1に測定の概念図を示す。試料の長さ(L) を測る方向は垂直方向(z 方向)で、磁場の 向きはそれに垂直な平面内 (x-y 平面)で回転 する。測定機器はすべて計測用ソフトウエア によってコンピューター制御され、測定はほ ぼ全自動で行えるようにした。測定条件とし ての温度範囲は230mKから40Kまで、最大 磁場は8テスラ、角度範囲は360°以上、角 度分解能は 0.01。で、精密な熱膨張(磁歪) の磁場方向依存性の測定が可能になった。

図1.角度分解熱膨脹測定の概念図

(3) f 電子系化合物への応用

本研究では上記の装置を用いて、f電子系 化合物HoSbとCeRu₂Al₁₀の角度分解熱膨張測定 を行った。以下にそれぞれの物質について簡 単に説明する。

金属間化合物 HoSb は立方晶 NaCl 型の結晶 構造を持ち、5.4K で反強磁性転移を示す。こ の秩序状態に外部磁場を印加すると新しい 秩序状態が現れる。この物質の研究は 30 年 程前に最も盛んに行われたが、この磁場誘起 秩序の起源について未だに詳しいことは明 らかにされていない。そこで本研究では HoSb の純良単結晶試料の育成および磁気相図に ついて詳しく調べた。

斜方晶CeRu₂Al₁₀はT₀=27Kで伝搬ベクトル k=[100]、磁気モーメントがc軸方向を向いた 反強磁性秩序(A相)を示す。Ce原子間距離 が大きいにもかかわらず転移温度がかなり 高いことから、反強磁性転移の起源について はまだ十分に理解されていない。また反強磁 性状態では、c軸方向においてのみ磁場H*=3T で1次のメタ磁性転移(A-B転移)が観測さ れる。このメタ磁性転移の起源についても明 らかになっていない。本研究ではA-B転移の 磁場角度依存性およびLa希釈効果について 調べた。なお、測定に使用した単決結晶試料 は広島大学の世良正文教授らの研究グルー プに提供していただいた。

- 4. 研究成果
- (1) 立方晶 HoSb の磁場誘起秩序の研究

我々はまずフラックス法による HoSb の単 結晶試料の育成を行い、残留抵抗比が100近 い高純度な単結晶試料の作成に成功した。こ の試料を用いて立方晶の主要な3方向の磁気 相図を調べた。結果を図2に示す。[110]と [111] 方向では磁場誘起秩序(Q相)への転移 温度が磁場とともに顕著な増大傾向を示す ことがわかった。このような磁気相図は反強 四極子秩序を示す化合物でよく見られるこ とから、磁場誘起相は反強四極子秩序状態の 可能性が考えられる。一方、[100]方向では 磁場誘起相は1つではなく3相に分かれてい ることが明らかになった。また他の方位と比 べると[100]方向の Q 相はかなり狭いことか ら、Q相は反強四極子秩序で説明できるのか どうかは明らかではなく、今後はより高次の 多極子秩序の可能性も含め検討する必要が ある。

図2. HoSbの磁気相図。AFは反強磁性相、 Qは磁場誘起秩序相、Pは常磁性相を表す。

 (2) CeRu₂Al₁₀におけるメタ磁性転移の研究 CeRu₂Al₁₀は斜方晶の3つの主要軸の中でc 軸方向においてのみ磁場H*=3Tで1次のメタ

図 3. CeRu₂Al₁₀の 0.3Kでの*H*-θ相図。A、Bは反 強磁性相内での低磁場相、高磁場相を示す。

磁性転移(A-B転移)が観測される。この0.3K でのA-B転移磁場H*の磁場方向依存性を詳し く調べた。結果を図3に示す。磁場の向きを c軸からa軸方向に変化させると、H*の値は急 激に増大し、発散傾向を示すことが分かった。 一方c軸からb軸方向に磁場の向きを変化さ せると、H*はわずかに増加しただけであまり 変化せず、b軸とc軸のあいだの角度でA-B転 移は消失し、臨界点をもつらしいことがわか った。このH*の磁場角度依存性は、高磁場相

(B相)での反強磁性モーメントが磁化容易 軸のa軸方向ではなく、磁化困難軸であるb軸 方向に向いていると仮定すると自然に理解 することができる。しかしなぜA相、B相とも に反強磁性モーメントが磁化容易軸であるa 軸方向へ向かないのかはわかっておらず、今 後の課題である。

次にCeをLaで置換したCe_{1-x}La_xRu₂Al₁₀の系 において、La濃度x=0.03の結果は全体的に x=0の結果とよく似ており、明瞭なA-B転移が 確認できたが、La濃度がさらに2%だけ多い x=0.05ではA-B転移はほぼ消失していること がわかった。この結果はA-B転移がLa不純物 に非常に敏感であり、フェルミ面が関与した 相転移であることを強く示唆している。この 結果からも、この物質の反強磁性転移が単純 な反強磁性転移によるものではないと考え られる。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者 には下線) 〔雑誌論文〕(計13件)

Y. Aoki, T. Namiki, S. R. Saha, <u>T. Tayama</u>, T. Sakakibara, R. Shiina, H. Shiba, H. Sugawara, and H. Sato, "f-Electron-Nuclear Hyperfine-Coupled Multiplets in the Unconventional Charge Order Phase of Filled Skutterudite PrRu₄P₁₂", J Phys. Soc. Jpn. 80, 2011, 054704-1-7, 査読有.

K. Ohgushi , j. Yamaura, M. Ichihara, Y. Kiuchi, <u>T. Tayama</u>, T. Sakakibara, H. Gotou, T. Yagi and Y. Ueda, "Structural and electronic properties of pyrochlore-type $A_2Re_2O_7$ (A = Ca, Cd, and Pb)", Phys. Rev. B 83, 2011, 125103-1-6, 査読有.

<u>T. Tayama</u>, Y. Takayama, Y. Miura, S. Zhang, and Y. Isikawa, "Low-Temperature Magnetization of Antiferromagnet NdCu₄Ag", J. Phys. Soc. Jpn., 80, Suppl. A, 2011, SA064-1-3, 査読有.

S. Zhang, Y. Isikawa, <u>T. Tayama</u>, T. Kuwai,
T. Mizushima, M. Akatsu, Y. Nemoto, T.
Goto, "Magnetic and Thermal Properties in Cubic Single Crystal PrCu₄Ag",

J. Phys. Soc. Jpn. 79, 2010, 114707-1-8, 査読有.

H. Mitamura, <u>T. Tayama</u>, T. Sakakibara, S. Tsuduku, G. Ano, I. Ishii, M. Akatsu, Y. Nemoto, T. Goto, A. Kikkawa, and H. Kitazawa, "Low Temperature Magnetic Properties of Ce₃Pd₂₀Si₆", J. Phys. Soc. Jpn. 79, 2010, 074712-1-6, 査読有.

S. Zhang, <u>T. Tayama</u>, T. Mizushima, T. Kuwai, and Y. Isikawa,

"Magnetic Phase Diagram in NdCu₄Ag Single Crystal", J. Phys. Soc. Jpn. 79, 2010, 043704-1-4, 査読有.

Y. Machida, S. Nakatsuji, S. Onoda, <u>T.</u> <u>Tayama</u>, and T. Sakakibara, "Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order", Nature 463, 2010, 210-213, 査読有. Y. Isikawa, K. Somiya, H. Koyanagi, T. Mizushima, T. Kuwai, <u>T. Tayama</u>, "Thermoelectric Power of PrMg₃", J. Phys.: Conf. Ser. 200, 2010, 012069, 査 読有.

H. Mitamura, T. Sakuraba, <u>T. Tayama</u>, T. Sakakibara, S. Tsuduku, G. Ano, I. Ishii, M. Akatsu, Y. Nemoto, T. Goto and H. Kitazawa, "Magnetic properties of $Ce_3Pd_{20}Si_6$ at very low temperatures", J. Phys.: Conf. Series. 200, 2010, 012118-1-4, 査読有.

〔学会発表〕(計 33 件)

高山弥生、"立方晶 HoSb の磁場誘起秩序"、 日本物理学会第 67 回年次大会、2012 年 3 月 26 日、関西学院大学 西宮上ケ原キャンパス

小森正大、CeRu₂Al₁₀のLa希釈系における磁場 角度分解熱膨張測定、日本物理学会第 67 回 年次大会、2012年3月27日、関西学院大学 西 宮上ケ原キャンパス

小森正大、CeRu₂Al₁₀の磁場角度分解熱膨張、 日本物理学会 2011 年秋季大会、2011 年 9 月 21 日、 富山大学五福キャンパス

三浦唯、PrCu₄Agの極低温磁化と熱膨張、日本 物理学会2011年秋季大会、2011年9月23日、 富山大学五福キャンパス

高山弥生、反強磁性体SmIn₃の低温磁化および 熱膨張、日本物理学会第66回年次大会、2011 年3月25日、新潟大学五十嵐キャンパス

6. 研究組織

(1)研究代表者
 田山孝(TAYAMA TAKASHI)
 富山大学・大学院理工学研究部・准教授
 研究者番号: 20334344

(2)研究分担者 なし

(3)連携研究者 なし