科学研究費助成事業(科学研究費補助金)研究成果報告書

平成 24 年 5 月 28 日現在

機関番号:14401
研究種目:若手研究(A)
研究期間:2009~2011
課題番号:21686060
研究課題名(和文)
元素識別コヒーレント X 線回折顕微法の確立と金属材料の 4D ナノーメゾ組織解析
研究課題名(英文)
Establishment of element-specific coherent X-ray diffraction microscopy and 4D
nano-meso structural analysis of metallic materials
研究代表者
高橋 幸生(TAKAHASHI YUKIO)
大阪大学・大学院工学研究科・准教授
研究者番号:00415217

研究成果の概要(和文):

入射 X 線エネルギーが可変である X 線集光鏡を駆使した元素識別高分解能コヒーレント X 線 回折顕微法を第三世代放射光施設 SPring-8 に構築し、機能性金属ナノ粒子のナノ-メゾ組織解 析に応用した。銀ナノキューブ粒子の観察において、X 線顕微法の空間分解能の世界記録であ る 2nm を達成し、金/銀ナノ中空粒子の三次元電子密度マッピングにも成功した。また、本手 法を走査型測定法へ拡張することで、本顕微法の大視野化を実現した。

研究成果の概要(英文):

Element-specific high-resolution coherent X-ray diffraction microscopy with energy-tunable X-ray focusing mirrors has been developed at SPring-8 that is the third-generation synchrotron radiation facility and has been applied to nano-meso structural analysis of functional metallic nanoparticles. 2 nm resolution, which is the world record of the spatial resolution of X-ray microscopy, has been achieved at the measurements of a Ag nanocube particle. Three-dimensional electron density mapping of a Au/Ag nanobox particle has been visualized. In addition, large-field-of-view imaging has been also realized by extending to a scanning scheme.

			(金額単位:円)
	直接経費	間接経費	合 計
2009 年度	8, 700, 000	2, 610, 000	11, 310, 000
2010 年度	7, 800, 000	2, 340, 000	10, 140, 000
2011 年度	3, 200, 000	960, 000	4, 160, 000
年度			
年度			
総計	19, 700, 000	5, 910, 000	25, 610, 000

交付決定額

研究分野:X線構造解析

科研費の分科・細目:材料工学・金属物性

キーワード:コヒーレントX線光学、X線顕微鏡、金属ナノ組織解析

1. 研究開始当初の背景

X線顕微鏡はX線の高い透過性と短波長性 を活かし、厚い試料の内部構造を非破壊で高 分解能観察できる方法として広く用いられ ている。特に、近年の放射光科学において、そ の技術的な進展は目覚しい。しかしながら, 原子分解能を達成している電子顕微鏡と比 べるとX線顕微鏡は空間分解能の面で大きな 遅れをとってきた。これは、X線が電子線と 比べてその進行方向を変えることが困難、す

なわち、優れたレンズを作製することが困難 であることに起因する。この問題を回避して、 原理的にX線波長程度の分解能を達成可能な のが、コヒーレント X 線回折顕微法である。 X線回折顕微法は、コヒーレントX線回折の 散乱強度測定を行い、レンズの代わりに位相 回復計算を用いて、試料像を得る。このコヒ ーレントX線回折顕微法の歴史は比較的浅く、 1999年の Miao らの報告が契機となって、世 界中の放射光施設で実験が行われるように なり、手法開発から応用に至るまで多くの報 告がなされてきた。コヒーレントX線回折顕 微法で実現可能な理論空間分解能はX線波長 程度(オングストロームオーダー)であるが、 実際にそれを達成することは容易なことで はない。高分解能を達成するには、高散乱角 度の微弱な回折強度を測定する必要があり、 高フラックス密度のコヒーレントX線を試料 に照射しなければならない。しかしながら、 SPring-8 のような高輝度 X 線源を利用して も、コヒーレントX線のフラックスは十分で はなく、10nm 程度の空間分解能が限界であ った。

2. 研究の目的

既存の放射光源を活用し、高フラックス密度のコヒーレントX線を得る唯一の方法がX線を集光することである。本研究では、第三世代放射光施設SPring-8においてX線全反射集光鏡を備えた高分解能コヒーレントX線回折顕微法を構築し、機能性金属ナノ粒子の電子密度、元素分布マッピングに応用することが目的である。

3. 研究の方法

本研究では、まず波動光学シミュレーショ ンにより、コヒーレントX線回折顕微法に適 したX線全反射集光鏡を設計し、製作する。 そして、第三世代放射光施設SPring-8の理 化学研究所専用のビームラインにおいて、全 反射集光鏡を備えたコヒーレントX線回折顕 微法装置を開発し、金属ナノキューブ粒子を 用いた高分解能コヒーレントX線回折顕微法 の実証実験を行う。そして、金/銀ナノキュー ブ粒子の電子密度マッピングやX線異常散乱 を利用した元素マッピングへと発展させる。 また、観察対象を孤立物体に限定しない走査 型測定法の開発にも取り組む。

4. 研究成果

(1)波動光学シミュレーションによる高分解 能コヒーレントX線回折顕微法の実現可能性 の検討

図1 にシミュレーションの概略図を示す。 X線は8keVの完全単色、すなわち、時間コ ヒーレンス長は無限大とした。光源はカオス 光源とし、光源強度を垂直方向6um,水平方

図 3 Fringe visibility のヤングスリット 間隔依存性

向 301um の幅のガウス分布(アンジュレータ 出口での電子ビームサイズを想定)で与えた。 光源から下流 52m にクロススリット(光学ハ ッチ内のクロススリットを想定)を配置し、ス リットから約 48m 下流(実験ハッチ 2)にミラ ーを配置した。光源各点から発する X 線球面 波を伝播させ、観測点では光源各点に由来す る X線の強度の和を計算した。図2に集光点 での光子密度分布を示す。光子密度は、 クロ ススリット位置での光子密度で規格化され ており、縦軸の値は、クロススリット位置に 対する光子密度の増加の割合に対応する。ク ロススリットの開口サイズによらず、半値幅 1um 程度に集光されることが分かる。また、 クロススリットの開口サイズを大きくする ことで、集光に寄与する光子数が増加し、焦 点での光子密度が増加していくことが分か る。また、ミラーの開口サイズが~100um で あることから、スリット開口サイズを 100um 以上としても光子密度の大きな変化は見ら れなかった。ここで、注目すべき点は、垂直 方向は水平方向に比べて1桁程光子密度が大 きいということである。これは、垂直・ 水 平方向で光源サイズが異なることに由来し ている。次に集光点での空間コヒーレンスに ついて調べた。図1に示すように集光点には ヤングスリットを配置し、後方での干渉縞か ら Fringe visibility を計算した。図 3 に

Fringe visibility のヤングスリット間隔依存 性を示す。垂直、水平方向ともに、48m 上流 のクロススリットの開口サイズの増加と共 に、集光ビーム内の空間コヒーレンスが低下 する。また、水平方向は垂直方向と比べてコ ヒーレンスの低下が顕著である。これも、集 光光子密度と同様に光源サイズに関係して いる。また、ヤングスリット間隔が~1.5um を超えると Fringe visibility の変化が複雑に なる。これは、集光メインビーム周りのサテ ライト成分の影響による。以上のシミュレー ション結果より、2枚のミラーを組みあせて 2 次元集光すれば、集光径~1um で、光子密 度を数百倍程度まで増加できることが分か った。また、クロススリットが集光ビーム内 のX線光子密度と空間コヒーレンスを制御す る役割を担い、クロススリットを適切な開口 サイズとすることで、集光ビーム径以下のサ イズ試料に空間的にコヒーレントなX線を照 射できることが判明した。

(2)銀ナノキューブ粒子を用いた高分解能コ ヒーレントX線回折顕微法の実証実験

開発した高分解能回折顕微法装置を用い たデモンストレーション実験を SPring-8 の BL29XULにて行った。図4は、実験で得ら れた銀ナノキューブの回折パターンである。 十字状の斑点模様が低波数から高波数領域 に伸びているのが分かる。このパターンは、 光学の教科書になら必ず載っている矩形開 口からのフラウンホーファー回折パターン と同じである。その強度分布は sinc 関数の二 乗に従うことが知られている。次に、回折パ ターンから試料像の再構成を行った。試料像 の再構成にはHybrid Input Output アルゴリ ズムを用いた。乱数発生により作成した5つ のランダムな電子密度分布から出発し、それ

図4 銀ナノキューブからのコヒーレント X線回折パターン。

図 5 銀ナノキューブの再構成像および断 面プロファイル。

ぞれについて再構成を行い、それらを平均化 することで最終的な試料像を得た。図5が再 構成された像であり、銀ナノキューブの四角 い形を確認でき、銀ナノキューブの電子密度 分布の投影像とみなせる。再構成像のエッジ の断面を調べたところ、エッジ分解能は ~2nm であった。この 2nm 分解能は X 線顕 微法で達成された分解能の世界記録である。

(3)金/銀ナノボックス粒子の三次元電子密度 マッピングへの応用

高分解能コヒーレントX線回折顕微法を使 って金属ナノ粒子を観察すると、金属ナノ粒 子の微細構造を鮮明に可視化することがで きる。図6に金/銀ナノ中空粒子を観察した例 を示す。この金/銀ナノ中空粒子は、銀ナノ立 方体粒子を塩化金酸溶液中に浸し、銀と塩化 金イオン間のガルバニ置換反応によって合 成した。図6(a)は様々な入射X線角度で測定 された複数枚の回折パターンを位相回復し て導出される等電子密度面であり、粒子の表 面の小さな穴や窪みがあることが分かる。こ れまでの研究からガルバニ置換反応の初期 過程において、粒子表面に小さな穴が形成さ れることが報告されており、今回観察された 表面の小さな穴は、初期段階の反応に関係し

図 6 金/銀ナノ中空粒子の再構成像。 (a) 表面像、(b)断面像。

ていることが示唆される。また、粒子の三次 元電子密度分布像をスライスすると、内部構 造を電子密度分布として詳細に調べること ができる。図 6(b)に断面像を示す。断面像を 調べると、粒子の角に金原子の多く含まれる 領域が局在している傾向が見られる。このこ とから、粒子の角を起点として置換反応が進 行したことが示唆される。また、断面像から 最も薄い構造の断面プロファイルをプロッ トするとその半値半幅は 10nm であり、これ は、10nm より優れた空間分解能で、観察で まていることを意味するとともに、X線 CT 撮影で達成された世界最高分解能であった。

(4)走査型コヒーレント X 線回折顕微法への 拡張

X線集光鏡を駆使することで、コヒーレントX線回折顕微法の空間分解能は飛躍的に向上された反面、観察対象とする試料サイズは小さくなり、200nm以下の孤立物体に限定されるという大きな問題があった。この問題を解決するのが、走査型コヒーレントX線回折顕微法(通称:X線タイコグラフィーでは、X線照射領域が重なるように試料を二次元的に走査し、各点からのコヒーレント回折パターンを測定す

図 7 高分解能 X 線タイコグラフィーで観 察した Ta テストチャートの位相分布。

図 8 (a)入射 X 線エネルギー11.70keV で観 察した金/銀ナノ中空粒子。(b)11.70keV と 11.91keV の再構成像の差分を計算するこ とによって導出した金元素の像。

るが、試料上の正確な位置に X 線を照射しな いと、再構成像の空間分解能は低下する。本 研究では、X 線タイコグラフィー用の恒温化 システムを構築し、温度ドリフトによる X 線 照射位置エラーを軽減させた。これに加えて、 X 線照射位置を修正する技術開発にも成功し、 10um 以上の視野を 10nm 以下の空間分解能 で観察可能な X 線タイコグラフィー法を開 発・実証した(図 7)。さらに、元素の吸収端 近傍の X 線異常散乱を利用することで、これ までX線タイコグラフィーで観察可能であっ た試料電子密度分布に加え、特定元素の分布 の可視化にも成功した(図 8)。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計14件)

- Y. Takahashi, A. Suzuki, N. Zettsu, Y. Kohmura, K. Yamauchi and T. Ishikawa, "Multiscale element mapping of buried structures by ptychographic x-ray diffraction microscopy using anomalous scattering," Appl. Phys. Lett., 99, 131905 (2011). (査読 有)
- Y. Takahashi, A. Suzuki, N. Zettsu, Y. Kohmura, Y. Senba, H. Ohashi, K. Yamauchi and T. Ishikawa, "Towards High-Resolution Ptychographic X-ray Diffraction Microscopy," *Phys. Rev. B* 83, 214109 (2011). (査読有)
- Y. Takahashi, Y. Nishino, R. Tsutsumi, N. Zettsu, E. Matsubara, K. Yamauchi and T. Ishikawa, "High-Resolution Projection Image Reconstruction of Thick Objects by Hard X-ray Diffraction Microscopy," *Phys. Rev. B* 82, 214102 (2010). (査読有)
- Y. Takahashi, N. Zettsu, Y. Nishino, R. Tsutsumi, E. Matsubara, T. Ishikawa and K. Yamauchi, "Three-dimensional electron density mapping of shape-controlled nanoparticle by focused hard x-ray diffraction microscopy," *Nano Lett.*, 10, 1922-1926 (2010). (査読有)
- <u>Y. Takahashi</u>, H. Kubo, R. Tsutsumi, S. Sakaki, N. Zettsu, Y. Nishino, T. Ishikawa and K. Yamauchi, "Two-dimensional measurement of focused x-ray beam profile using coherent x-ray diffraction of isolated nanoparticle," *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 616, 266-269 (2010). (査読有)
- 6. <u>Y. Takahashi</u>, H. Kubo, Y. Nishino, H. Furukawa, R. Tsutsumi, K. Yamauchi, T.

Ishikawa and E. Matsubara, "An experimental procedure for precise evaluation of electron density distribution of a nanostructured material by coherent x-ray diffraction microscopy," *Rev. Sci. Instrum.*, **81**, 033707 (2010). (査読有)

- Y. Takahashi, Y. Nishino, R. Tsutsumi, H. Kubo, H. Furukawa, H. Mimura, S. Matsuyama, N. Zettsu, E. Matsubara, T. Ishikawa and K. Yamauchi, "High-Resolution Diffraction Microscopy Using the Plane-Wave Field of a Nearly Diffraction-Limited Focusing X ray," *Phys. Rev. B* 80, 054103 (2009). (查読有)
- Y. Takahashi, Y. Nishino, H. Furukawa, H. Kubo, K. Yamauchi, T. Ishikawa and E. Matsubara, "Observation of electromigration voids in a Cu thin line by in situ coherent x-ray diffraction microscopy," *J. Appl. Phys.*, **105**, 124911 (2009). (査読有)
- Y. Takahashi, Y. Nishino, H. Mimura, R. Tsutsumi, H. Kubo, T. Ishikawa and K. Yamauchi, "Feasibility study of high-resolution coherent diffraction microscopy using synchrotron x rays focused by Kirkpatrick-Baez mirrors," J. Appl. Phys., 105, 083106 (2009). (査読有)

他5件 (すべて査読有)

〔学会発表〕(計36件)

- 高橋幸生、「X線集光ビームを利用したコ ヒーレント回折技術の開発と応用」アモ ルファス・ナノ材料第147委員会第1 12回研究会、 弘済会館 2012.5.27
- <u>高橋幸生</u>、「コヒーレント X 線回折による構造可視化の新手法」多元物質科学研究所 若手交流研究会、東北大学多元物 質科学研究所 2012.2.24
- 3. <u>高橋幸生</u>、「高分解能コヒーレント X 線 回折顕微法の現状と将来展望」日本顕微 鏡学会の電顕技術開発若手研究部会ワー クショップ「様々なイメージング技術の 現況と展望」、名古屋ファインセラミッ クスセンター 2012.1.5
- 4. 鈴木明大、<u>高橋幸生</u>、山内和人、是津信 行、香村芳樹、石川哲也、「高分解能走査 型コヒーレントX線回折顕微法の開発と 金属材料のナノ組織解析への応用」、日本 金属学会秋期大会、沖縄コンベンション センター 2011.11.7
- Y. Takahashi, A. Suzuki, Y. Kohmura, Y. Nishino, K. Yamauchi and Tetsuya Ishikawa, "High-resolution coherent diffraction imaging using focused hard x-ray beam at SPring-8," CXS Annual Workshop 2011, Bio21 Institute, Melbourne, Victoria,

Australia, 2011.10.10.

- <u>Y. Takahashi</u>, "Development and application of high-resolution diffraction microscopy using focused hard x-ray beam," The 4th International Workshop on FEL Science, Peppers Beach Club and Spa, Palm Cove, Cairns, Queensland, Australia, 2011.9.1.
- Y. Takahashi, "Development of high-resolution coherent X-ray diffraction microscopy and its application in materials science," International conference on processing & manufacturing of advanced materials, Quebec city convention centre, Quebec, Canada, 2011.8.3
- 8. 高橋幸生、堤 良輔、西野吉則、是津信行、 松原英一郎、山内和人、石川哲也、「試料 厚さの効果を考慮した高分解能コヒーレ ント X 線回折顕微法」第24回日本放射 光学会年会、エポカルつくば、2011.1.8
- "Development 9. <u>Y.</u> Takahashi, and high-resolution application of X-ray diffraction microscopy using advanced mirror optics," International Global COE Symposium on Atomically Controlled Technology 2010, Fabrication Osaka University Nakanoshima Center, Osaka, Japan, 2010.11.24
- 10. <u>高橋幸生</u>、是津信行、堤良輔、山内和人、 西野吉則、石川哲也、松原英一郎、「高分 解能コヒーレントX線回折顕微法による 金属ナノ粒子の三次元電子密度マッピン グ」、日本金属学会秋期大会、北海道大学、 2010.9.25
- 11. Y. Takahashi, Y. Nishino, E. Matsubara, T. Ishikawa and Kazuto Yamauchi, "Development and application of high-resolution diffraction microscopy using focused hard X-ray beam," the 10th Conference International X-ray of Microscopy, chicago, illinois, U.S.A. 2010.8.16
- 12. <u>Y. Takahashi</u>, "Development of coherent x-ray diffraction microscopy and its application in materials science," The 7th International Conference on Synchrotron Radiation in Materials Science, Oxford, UK 2010.7.12
- 13. <u>Y. Takahashi</u>, "Development of coherent x-ray diffraction microscopy and its application in materials science," TMS annual meeting, Seattle, Washington, U.S.A. 2010.2.16
- 14. <u>高橋幸生</u>、「コヒーレント X 線回折・散
 乱イメージング技術の開発とその応用」、
 第 23 回日本放射光学会年会、 イーグレ
 姫路、 2010.1.6
- 15. <u>Y. Takahashi</u>, "Development and

application of coherent x-ray diffraction microscopy at SPring-8," "X-ray coherent diffraction" Workshop & XFEL Meeting, SOLEIL Synchrotron facility, France 2009.12.14

- 高橋幸生、「硬 X 線集光ビームを用いた 高分解能回折顕微法の開発」第10回X 線結像光学シンポジウム、つくばエポカ ル 2009.11.7
- 17. <u>高橋幸生</u>、「集光 X 線を利用した高分解 能回折顕微法の開発」日本放射光学会第 一回若手研究会「X 線ナノ集光技術研究 会」、大阪大学 2009.8.10

他 19 件

〔受賞等〕

- 1. 鈴木明大、<u>高橋幸生</u>、山内和人、是津信 行、香村芳樹、石川哲也、「高分解能走査 型コヒーレントX線回折顕微法の開発と 金属材料のナノ組織解析への応用」、優秀 ポスター賞、日本金属学会、2011.11.8
- <u>高橋幸生</u>、「コヒーレント X 線散乱イメ ージング技術の開発と応用の研究」文部 科学大臣表彰若手科学者賞(科学技術部 門)、文部科学省、 2011.4.20
- 3. <u>高橋幸生</u>、是津信行、西野吉則、堤良輔、 松原英一郎、石川哲也、山内和人、「高分 解能コヒーレントX線回折顕微法による 金銀ナノボックス粒子の三次元電子密度 マッピング」、第 61 回金属組織写真賞奨 励賞(顕微鏡関連部門)、日本金属学会、 2011.3.25
- 4. <u>Y. Takahashi</u>, 2010 JIM/TMS Young Leader International Scholar, The Minerals, Metals & Materials Society, 2010.2.14
- 5. <u>高橋幸生</u>、「コヒーレントX線散乱・回 折イメージング技術の開発と応用」、第 14回日本放射光学会奨励賞、日本放射 光学会、2010.1.7

〔新聞発表等〕

- 1. RIKEN Research [What lies beneath: mapping hidden nanostructures] 2012.2.10
- 科学新聞「物質中の電子密度や特定元素 の分布観察 大視野・高分解能X線顕微 鏡 阪大、名大、理研の研究グループ開 発」2011.10.14
- 化学工業日報「元素識別が可能に 大視 野、高分解能 X 線顕微鏡を開発 阪大 など」2011.10.3
- 日刊工業新聞「大視野で高空間分解能 阪大などがX線顕微鏡」2011.10.3
- 5. 読売新聞「原子見分ける顕微鏡 阪大・ 理研など開発」2011.9.29
- 朝日新聞「10 ナノのくぼみはっきり 新型のX線顕微鏡 阪大グループ開発」

2010.5.11

 7. 日経産業新聞「X線顕微鏡 観察精度10 ナノ以下 阪大など SPring-8 活用」 2010.4.21

[その他]

http://www-up.prec.eng.osaka-u.ac.jp/takahashi/

6.研究組織
 (1)研究代表者
 高橋 幸生(TAKAHASHI YUKIO)
 大阪大学・大学院工学研究科・准教授
 研究者番号:00415217

(2)研究分担者 なし

(3)連携研究者 なし