科学研究費補助金研究成果報告書

平成23年6月10日現在

機関番号: 12601 研究種目:若手研究(B) 研究期間: 2009~2010 課題番号: 21760065 研究課題名(和文)メタダイナミクスに基づくナノ界面安定構造探索と密着特性評価への展開 研究課題名(英文) Metadyancmis based searching for the stable structure of nano-scale interfaces and its application to the evaluation for their adhesion properties 研究代表者 原 祥太郎(HARA SHOTARO) 東京大学・大学院工学系研究科・講師 研究者番号: 10401134

研究成果の概要(和文):

ナノスケール界面の安定構造を探索するためには、界面近傍で発生する原子スケール熱活性 化現象を理解する必要がある.しかしながら、分子動力学法(MD)を代表とした従来原子計 算スキームは、時間スケールに大きな制約があるため、固体内欠陥挙動を捉えにくく、結果、 正確に発生頻度や活性化パラメータを予測することが困難であった.そこで、(1) OK で活 性化エンタルピーを定量的に算出できる大規模反応経路解析(NEB法)の開発(2)有限温度 で秒スケールに及ぶ長時間ダイナミクスを実現できる加速化分子動力学法(Hyperdynamics法) の新しいアルゴリズム提案・開発を行い、金属中の転位発生プロセスへの適用可能性を検証し た.結果、加速化シミュレーションによって、実験スケール(秒オーダー)の解析に成功し、 応力と温度に依存する活性化パラメータの獲得に始めて成功した。

研究成果の概要(英文):

The stable structures of nano-scale interfaces are the results of the kinetics associated with thermally activated processes at the atomic scale. However, molecular dynamics (MD) simulations can only span a very limited time which hinders one from gaining full view of the mechanics. Here, we have developed (1) large scale reaction pathway analysis (NEB) and (2) a transformation strain-boost hyperdynamics method for accelerating atomistic simulations, which is found to be efficient and robust for exploring collective stress-driven processes like dislocation nucleation. By introducing an adaptive algorithm, we directly access the finite-temperature dynamical process of dislocation nucleation in compressed Cu nano-pillar over timescale comparable to laboratory experiments. Our method provides stress- and temperature-dependent activation enthalpy, activation entropy and activation volume for surface dislocation nucleation with no prior guidance about crystallography or deformation physics.

			(金額単位:円)
	直接経費	間接経費	合 計
2009 年度	2, 100, 000	630, 000	2, 730, 000
2010 年度	1, 000, 000	300, 000	1, 300, 000
年度			
年度			
年度			
総計	3, 100, 000	930, 000	4, 030, 000

交付決定額

研究分野:工学 科研費の分科・細目:機械工学、機械材料・材料力学 キーワード:計算物理・ナノ材料・材料強度

科学研究費補助金研究成果報告書

1. 研究開始当初の背景

ナノスケール界面の密着特性は、ミクロな界 面構造と極めて相関が強い。よって、複雑なナノ 界面構造を解き明かし、さらに界面設計に役立 つような「分子計算フレームワーク」が構築でき れば、本分野の革新的発展が期待できる.しか しながら、現状の分子動力学法(MD)を代 表とした原子解像度を有する計算スキーム ではナノ秒程度しか扱えないという時間ス ケールの制約があり、実験(秒スケール)と の間に大きなギャップがある.このギャップ が時として対象とする熱活性化過程の理解 を妨げてしまうことが大きな問題となって いる.

2. 研究の目的

本研究では、表面・界面の構造を強く反映 する表面・界面近傍からの転位生成メカニズ ムに着眼する.しかしながら、上記に述べた ように、転位生成過程は熱活性化過程であり、 実験と同等の時間スケール(秒~時間)で生じ るような現象を分子動力学法から直接追跡 することはできない.結果として現象の反応 頻度を議論するには至っていない.

本研究ではまず,表面ステップからの転位 生成に対して大規模 Nudged Elastic Band (NEB)解析による位相サンプリング法を開 発し適用する.NEB解析を通して,表面ステ ップからの転位生成の詳細な反応経路を明 らかにする.また,活性化エンタルピーを算 出することで,現象の反応頻度を予測する。

上記 NEB 法は静的な計算に制約される。 この問題を克服すべく, Voter により提案さ れた加速化 MD 法(Hyperdynamics 法)をベ ースに,応力駆動原子プロセスに対応できる Adaptive strain-boost 法を新たに提案する.こ こでは,開発手法を金属表面からの転位生成 プロセスへと適用し,長時間シミュレーショ ンの実現し、活性化自由エネルギーの取得を 初めて可能とした。

3. 研究の方法

(1)大規模 NEB 解析

図1に計算モデルの概念図を示す.セルは, fcc 構造を持つ Ni 原子 74400 個で構成され, そのサイズは 9.8 [nm]×9.8 [nm]×7.8 [nm]とし た. *x* 方向([110]), *y* 方向([Ī10])に周期境界条 件を課し, *z* 方向([001])は自由境界とした. *z* 方向最下端から数層は固定原子とした.一方, Ni(001)表面上には、y 方向([110])に平行で、 高さ1原子層のステップ構造を作成した.こ の時ステップ構造は、主すべり系の一つであ る(111)面と(001)表面との交線に平行となる. ここでは、x,y 方向に二軸の引張りひずみ $\varepsilon = \varepsilon_{yy} = \varepsilon_{yy}$ を与えた系を考える.

転位が熱の寄与なく生成する臨界ひずみ \mathcal{E}_{ath} (athermal threshold)より小さな作用ひず み下における,表面ステップからの転位生成 の最小エネルギー経路探索には NEB 法を用 いた. NEB 法は、まず初期状態と最終状態の 間を中間イメージに分割し、隣接イメージ間 を仮想バネで結んだ後,各中間イメージに作 用するバネカの経路に平行な成分とポテン シャル力の経路に垂直な成分との合力を最 小化する手法である.本計算では、 \mathcal{E}_{ath} より 小さな作用ひずみ & 下で構造緩和した, 無転 位の系を初期状態と設定した.一方最終状態 は、一度 ε_{ath} より大きい作用ひずみを作用さ せ,ステップより上記の直線状の部分転位を 生成させた後,初期状態と同じ作用ひずみ ε へと戻した系を最終状態とした. 全イメージ 数は9とし初期中間イメージは線形補間に より生成した.また本計算では、より精度よ く効率的に活性化エネルギーを算出するた め, Climbing Image NEB 法と Free-End NEB 法を用いた.

step (one atomic layer)

(2)加速化分子動力学の開発

Hyperdynamics では、図1に示すように、 元のポテンシャル $V(\mathbf{r})$ 上のローカルミニマ ム(A)周りに正の boost ポテンシャル $\Delta V(\mathbf{r})$ を 加える.状態遷移理論(TST)のもと、ダイ ナミクスの加速化を実現するためには、 ΔV はAを囲む全ての dividing surface においてゼ ロである必要がある. この条件が満たされ

図1:Ni表面ステップモデル

る時, $V_b = V + \Delta V$ 上で実行されるダイナミク ス計算の時間増分は $\Delta t_{Phys} = \Delta t_{MD}e^{\beta\Delta V}$ となり, 通常の MD に対する平均加速化率 b_{ave} が,統 計量 $\langle e^{\beta\Delta V} \rangle$ として得られる.しかしながら, 一般に3N次元のポテンシャル空間において, 上記条件を満たす ΔV の構築は難しいことが 知られている.そこで本研究では,Miron ら が開発した bond-boost 法をベースに,新たに strain-boost 法と adaptive アルゴリズムを用い て ΔV を構築する.

本手法では、 ΔV を原子iに割り当てられる ローカルな幾何学変数 $s_i(\mathbf{r})$ で記述する.変数 sは興味のあるミクロレベルでの遷移状態が 識別できるような変数とする.本研究では、 応力駆動の原子プロセスを対象とするため、 原子スケールで記述できる局所Lagrangianひ ずみ $\mathbf{\eta}_i$ を用いる.ここで、 $\mathbf{\eta}_i$ の定義に必要 なカットオフ長は、遷移状態での原子の集団 性を示す活性化体積と関連づけて定義する. この原子ひずみを増幅させるboostポテンシ ャルは、次のような関数形で表現する.

$$\Delta V(\mathbf{r}) \equiv \Delta V(s) = \frac{A(s_{\text{max}})}{N_{\text{b}}} \sum_{i}^{N_{\text{b}}} \delta V_{i}(s_{i})$$

ここで、 s_i は η_i の Mises 形式である η_i^{Mises} , は原子 i に割り当てる boost ポテンシャル, N_b は boost 原子数である. $A(s_{max})$ は N_b 個の 変数 S_iの最大値から成る関数であり, $s_{\max} \le q_c \mathcal{O}$; $A = 1 - (s_{\max}/q_c)^2$, $s_{\max} > q_c \mathcal{O}$ 時 A=0を満たす. つまり, 関数 A(s_{max}) は ΔV をシャットダウンする役割を果たす.よって, 全ての dividing surface で $\Delta V = 0$ という hyperdynamics の前提条件を満たすには, 適切 な臨界値 qc を定める必要がある.一方,この qc があまりに小さい場合,十分な加速化が得 られない. そこで本研究では、最大の加速化 効率を与える最適な $q_{c} = q_{c}^{max}$ を評価すること を目的に, 次のような adaptive アルゴリズム を hyperdynamics 計算の前処理として取り込 む.本アルゴリズムでは、 $\delta V_i = \alpha (s_i - q_c)^2$ (□ は定数)の関数をした調和型ポテンシャルを 用いて、qcを制御しながらダイナミクス計算 を行う.この時,以下の手順に従い, g^{max}を 決定する.

(1)系が遷移状態を見つけるまで q_c 値を 0 からゆっくりと増加させ、dividing surface を特徴付けるおおよその q_{div} 値を決定する.

(2)つづいて,系が遷移状態を見つけるまで q_c 一定のシミュレーションを実施する.この時, q_{div} よりやや小さな値の q_c 値を用いる.シミ ュレーション中,boost ポテンシャルの境界 (すなわち, $s_{max} = q_c$)に系が達した時, quenching 等を施すことで,境界がローカルミ ニマムAとBの領域のどちらに属するかを判 定する.

(3)境界が A 領域側にあることを保障するような最大の q_c 値を探索する. 統計的な観点から, ある q_c から得られる5つの異なるトラジェクトリー全てについて上記条件を満たす時, $q_c = q_c^{max}$ と決定する.

本シミュレーション (adaptive strain-boost 法) では、本アルゴリズムにより適切な q_c^{\max} を選んだ後、一定 $q_c(=q_c^{\max})$ の条件のもと、 $\delta V_i = V_{\max}(1-(s_i/q_c)^2)$ の boost ポテンシャル関 数を用いて、従来同様の hyperdynamics 計算 を実行する.

図 2: Hyperdynamics 概念図

4. 研究成果

(1)NEB 解析による活性化エンタルピー算出 活性化エネルギは作用ひずみ(作用応力) の関数である.その応力依存性からは、活性 化体積といった、現象のカイネティックな特 性を示す物理量を導出することができる. 図 3 に, 異なる作用ひずみについて NEB 解析を 行った結果を示す. 作用ひずみが増加するに 従い、活性化エネルギーは減少し、ちょうど athermal threshold において活性化エネルギは 0となる.一般的に、活性化エネルギーQと 作用ひずみ ε の間には $Q = Q_0 (1 - \varepsilon / \varepsilon_{ath})^{\alpha}$ の関 係が成り立つ.ここで Q_{0} α は材料と現象に 依存するパラメータであり、フィッティング により求めたところ, Q₀=19.3 [eV], a=3.1 と なった.図3にはフィッティング曲線も示す. また、 $\Omega = -dQ/d\sigma$ で定義される活性化体積 を算出したところ、ひずみ €=0.0307 におい て, Ω=9b³(b=0.249nm)となり, Ni 結晶粒界か らの転位生成と同程度の小さな値となった.

図3.転位生成の活性化エンタルピーのひず み依存性

(2)加速化分子動力学シミュレーション

本手法をCu ナノピラーの圧縮過程における, 表面からの転位生成プロセスへと適用した.計 算サイズは 4.3 nm×4.3 nm×8.2 nm とし,原子 間相互作用には Mishin ポテンシャルを用い た.原子[001]軸に圧縮ひずみを加え,コーナー 部から射出する $b_p=a_0/6 < 1\overline{12} > (1\overline{11})$ の Shockley 部分転位について検討した.本モデルでは, Boost potential δV_i は,起こりうる転位生成ルー トをブロックすることがないよう,4 辺のコーナ部 の原子に割り当てた.

図 4(a)に, adaptive strain-boost 法から得ら れた時間スケールの加速化率 (boost factor $b_{\text{ave}} = \langle e^{\beta \Delta V} \rangle$) を示す. 系の温度が減少する につれ,加速化率は指数関数的に増加する. ここで,100万 MD ステップ内に全計算サン プルが転位生成することを条件として,最大 加速化率を定めたところ、最大10¹¹のオーダ ーの加速化を得た. すなわち, ほぼ実験スケ ール相当のダイナミクス計算が達成できて いるといえる. 比較のため, adaptive bond-boost 法による結果も示す. Bond-boost 法では, strain-boost 法で boost した原子に接 続する全ての bond に対して boost を実行した. Bond-boost 法で得られた加速化率は低く,最 大加速率は 10³となった.転位生成のような 原子が集団運動する(活性化体積が大きい) 現象に対しては, strain-boost 法の方がより効 率的に反応経路をサンプリングできること がわかる.

図 4(b)に転位生成頻度 R のアレニウスプロ ットを示す.転位生成頻度は 25 サンプルの 平均値として算出した.図中,直接 MD 計算 から算出できた転位生成頻度も同時に示す. Strain-boost 法で得た加速化により,非常に幅

 \boxtimes 4: (a)Arrhenius plot of the averaged boost factor and (b)the rate for dislocation nucleation from surface.

広い温度領域に対してアレニウスプロット が再現できていることがわかる.また,与え られた応力ごとに,転位生成頻度がきれいな アレニウスの振る舞いを示すことが明らか となった.

ここで状態遷移理論を用いて図 4(b)で得た 直線とのフィッティングから,活性化エンタ ルピー $Q_0(\sigma)$ を算出した.一方,活性化エン タルピーは NEB 法からも算出できる.図 4(a) にその結果と比較を示す.得られた値は両手 法でほぼ一致し,その誤差はおよそ 0.02 eV 以下となった.

本計算で得た $R_0(\sigma)$ には,活性化エントロ ピーの情報が含まれる.ここで $M = 2N_b$, $\nu_{MEP}(\sigma)$ は NEB 法から得られた最小経路曲 線から $1.0 \sim 3.0 \times 10^{11} \sec^{-1}$ とし,活性化エント ロピー $S(\sigma)$ 算出した(図 5(b)).作用応力が 減少するにつれ,活性化エントロピーが増加 することがわかる.得られた活性化エンタル ピーと活性化エントロピーを用いれば,室温 における転位生成の活性化自由エネルギー が算出できる (図 5(a)). 室温での転位生成プ ロセスにおいて TS 項は無視できず, およそ活 性化エンタルピーの 40%にも達することが明ら かとなった.

☑ 5: Stress dependent activation parameter for dislocation nucleation from surface. (a) Activation free energy as a function of stress. (b) Activation entropy as a function of stress.

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計5件)

- <u>S. Hara</u>, S. Izumi, S. Sakai, "Reaction pathway analysis for dislocation nucleation from Ni surface step", J. Appl. Phys. 査読有, 106, (2009) 093507.
- <u>S. Hara</u>, Ju Li, "Adaptive strain-boost hyperdynamics simulations of stress-driven atomic processes ", Phys. Rev. B. 査読有, 82, (2010) 184114.
- H. A. Saeed, S. Izumi, <u>S. Hara</u>, S. Sakai, "Transition Pathway Analysis of Homogeneous Dislocation Nucleation in a Perfect Silicon Crystal", Mater. Res. Soc. Symp. Proc. 査読有, FF-05-14 (2010) 1224.
- 4. H. A. Saeed, S. Izumi, S. Hara, S. Sakai,

"Reaction Pathway Analysis of Homogeneous Dislocation Nucleation in a Perfect Molybdenum Crystal", MRS Online Proceedings Library. 査読有, 1297 (2011) 10-17.

 Yu Sun, S. Izumi, <u>S. Hara</u>, S. Sakai, "Anisotropy behavior of dislocation nucleation from a sharp corner in copper", J. Comput. Sci. Tech. 查読有, 5, (2011) 54-61.

〔学会発表〕(計8件)

- <u>原祥太郎</u>,泉聡志,酒井信介,ナノイン デンテーション中の転位核生成過程 における反応経路探索,第14回分子 動力学シンポジウム,愛媛県県民文化 会館,2009-05,78-80
- 平松嵩大,<u>原祥太郎</u>,泉聡志,酒井信 介, bcc モリブデン結晶における転位 生成過程の反応経路解析,第14回分 子動力学シンポジウム,愛媛県県民文 化会館,2009-05,48-49
- <u>原祥太郎</u>, Ju Li, 応力駆動原子プロセスに向けた加速化分子動力学法: Strain-Boost Hyperdynamics, 第15回分子動力学シンポジウム, 札幌コンベンションセンター, 2010-05, 20-22
- サイード・ハサン・アフタブ,泉聡志, <u>原祥太郎</u>,酒井信介,Siにおける shuffle・glide 均質転位核生成,第15 回分子動力学シンポジウム,札幌コン ベンションセンター,2010-05,39-40
- 5. サイード・ハサン・アフタブ,泉聡志, <u>原祥太郎</u>,酒井信介,均質転位核生成 過程における活性化エネルギーに関 する結晶構造の影響,第23回計算力 学講演会,北見工業大学,2010-09.
- ソンユ,泉聡志,<u>原祥太郎</u>,酒井信介, Dislocation nucleation from a sharp corner in copper: Difference between 90 partial and 30 partial,第23回計算力学 講演会,北見工業大学,2010-09.
- <u>原祥太郎</u>,泉聡志,酒井信介,加速化 分子動力学法による固体中の欠陥挙 動の活性化パラメータ導出,第23回 計算力学講演会,北見工業大学, 2010-09.
- <u>S. Hara</u>, Ju Li, "Adaptive strain-boost hyperdynamics simulations of stress-driven atomic processes ", 2010 Fall MRS meeting, Boston USA, December 2010.

[その他]

2010 年度日本材料学会第 15 回分子動力学シンポジウム一般部門優秀講演賞受賞

6. 研究組織

(1)研究代表者
原 祥太郎 (HARA SHOTARO)
東京大学・大学院工学系研究科・講師
研究者番号:10401134

(2)研究分担者

なし

(3)連携研究者

なし