大区分G

研究課題名 蛍光タンパク質の「明るさ」と「光安定性」に関する革新 的開発研究

理化学研究所・脳神経科学研究センター・チームリーダー

みやわき あつし **宮脇 敦史**

研 究 課 題 番 号: 21H05041 研究者番号: 80251445

研究期間: 令和3年度一令和7年度 研究経費(期間全体の直接経費):127,300千円

キーワード: バイオイメージング、蛍光タンパク質、褪色

【研究の背景・目的】

酸素分子は、蛍光タンパク質の成熟と褪色の両方に関与するため、諸刃の剣と言える。蛍光タンパク質技術分野においては、brightness (明るさ)と photostability (光安定性: 褪色しにくさ)の間にトレードオフがあると考えられている。これまで多くの変異体が brightness を追求して開発されてきたが、多くが photostability を犠牲にした所産である。褪色は、定量性を重視する科学アでした所産である。褪色はまた、対象を明るく標識して制度に対したが、導入蛍光分子の最い間題にならないが、導入蛍光分子の針にデビューして四半世紀、これまでは、質的のみならず量的にも brightness 偏重の傾向があったように思う。個々の実験に際して、導入すべき蛍光タンパク質の量的制限の是非はあまり議論されてこなかった。蛍光タンパク質技術は反省期を迎えつつある。

本研究は、brightness 対 photostability のトレードオフの打破を企図し、申請者らが最近に作製した新規蛍光タンパク質をベースに、質的に明るくかつ褪色しない蛍光標識技術を実用的に開発することを目的とする。蛍光タンパク質の発現量を抑えたサンプルの調製、励起および照明を最適化した光学技術を総合し、生理的かつ定量的で再現性のあるバイオイメージング技術の確立を目指す。

【研究の方法】

研究代表者らは刺胞動物から新規にクローニングし た緑色蛍光タンパク質を元に改変を行い、現時点で実用 的に最も明るいとされる mNeonGreen と同等の明るさ (モル吸光係数、蛍光量子収率、発色団形成スピード) を示しながら、通常の蛍光顕微鏡観察(放射照度:~0.2 W/cm2) において全く褪色しない蛍光タンパク質を作製 することに成功した。photostability の指標の世界標準と して、蛍光分子一個が一秒間に放出する光子数が 1,000 個から 500 個に半減するのにかかる時間 t_{1/2} が用いられ る。 t_{1/2} を様々な蛍光タンパク質と比較したところ、当 該蛍光タンパク質は、世に流布する蛍光タンパク質と比 べて10から100倍のphotostabilityがあると結論された。 現時点で、当該蛍光タンパク質の両末端は比較的短いた め、他の分子に連結するのが容易でないという問題があ る。様々な分子に連結できるよう両末端を伸長・改変す る。

本研究では、当該蛍光タンパク質の結晶構造解析および一分子観察を行う。前者で得られる構造データを元に、β-can における発色団の固定状況および発色団の酸素分子に対する近接性を議論する。当該蛍光タンパク質は大

量発現が極めて容易で、大腸菌培養液 1 liter 当たり 200 mg の精製タンパク質が得られている。後者では、励起光強度依存性(高次励起状態の関与)、酸素濃度依存性、三重項励起状態の滞在時間などに着目する。

本研究では、当該蛍光タンパク質でミトコンドリアや ER などの細胞小器官を標識し、構造化照明による超解像 (SIM) 観察を行う。SIM は 1 frame を取得するのに複数の蛍光画像を撮る必要があり、蛍光分子にphotostability が求められる。高速 3D-SIM で時間的かつ空間的な高分解能を確保したうえで、細胞全体に拡がる ER やミトコンドリアのネットワーク構造のダイナミズムを長時間にわたって観察することを試みる。

【期待される成果と意義】

「蛍光タンパク質や蛍光プローブははたしてどの 程度の量まで細胞内で発現させてよいのか?」は重大 でありながら等閑にされてきた問題である。あらゆる 機能プローブの導入は、細胞の機能に多かれ少なかれ 摂動をもたらす。機能プローブが内因性の機能タンパ ク質によって十分に希釈されること、すなわち細胞側 のキャパシティが十分に大きいことが理想である。た とえばカルシウムイメージングは昔から繁栄してき たが、その理由の一つとして、細胞内に様々な種類(親 和性)と膨大な量のカルシウム結合タンパク質が存在 することが挙げられる。豊富な内因性カルシウム緩衝 系のおかげで、細胞に大量のカルシウムセンサーを導 入し明るいイメージングを目指してもまず問題ない (細胞を健全に保てる) のである。蛍光タンパク質の 導入についても同様に議論できる。それぞれの実験で キャパシティを見積もり、それを超えないレンジで発 現を制御することが求められる。一見して暗いと思われるような細胞サンプルを対象に、褪色を心配する必 要のない定量的イメージングを produce していく。エ クソソームなど微細な構造物の動態を詳細に観察す ること、ゲノム編集に関連する分子の動態を少コピー 数で観察すること、などが期待される。

【当該研究課題と関連の深い論文・著書】

- · Nixon-Abell, J. et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354, aaf3928 (2016).
- Shaner, N.C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

【ホームページ等】

atsushi.miyawaki@riken.jp