令和3(2021)年度 基盤研究(S)審査結果の所見

研究課題名	Mechanism and Regulation of Stem Cell Fates by the
	Branched-Chain Amino Acid Metabolism in Cancer
研究代表者	伊藤 貴浩
	(京都大学・ウイルス・再生医科学研究所・教授)
	※令和3(2021)年7月末現在
研究期間	令和3(2021)年度~令和7(2025)年度
科学研究費委 員会審査・評価 第二部会にお ける所見	【課題の概要】
	がん幹細胞の幹細胞性維持機構の理解は、がんの発生や悪
	性制御の解明、がんの治療法の開発につながる非常に重要な
	課題である。
	本研究は、分岐鎖アミノ酸(BCAA)代謝に焦点を絞り、
	白血病幹細胞の幹細胞形質の分子基盤を明らかにしようとす
	るものである。既に応募者が発見した白血病幹細胞の BCAA
	依存性を軸に、BCAA に応答するシグナル経路やエピゲノム
	修飾を明らかにし、さらにがん細胞由来の BCAA の腫瘍微小
	環境への影響の解明を目指す。
	応募者は世界に先駆けてがん幹細胞におけるBCAA代謝の
	必要性を発見しており、本研究はその成果に基づく独創性の
	高いものである。
	がん幹細胞の糖代謝はよく研究され、その重要性が知られ
	ているが、アミノ酸代謝による幹細胞制御は未解明である。
	本研究はがん幹細胞制御にとどまらず、幅広い生命現象にお
	ける BCAA 代謝の役割解明の基盤となることが期待され、学
	術的重要性は高い。