研究成果報告書 科学研究費助成事業

今和 6 年 6 月 1 0 日現在

機関番号: 82627
研究種目: 基盤研究(C)(一般)
研究期間: 2021 ~ 2023
課題番号: 21K04522
研究課題名(和文)低硫黄燃料油中の芳香族分がすすの排出特性と壁面熱損失に及ぼす影響
研究課題名(英文)Influence of Aromatic Components in Low Sulpher Fuels on Soot Emission and Wall Heat Loss
研究代表者
今井 康雄(IMAI、Yasuo)
国立研究開発法人海上・港湾・航空技術研究所・海上技術安全研究所・上席研究員
研究老妾兄,40426219
₩ 光 百
交付決定額(研究期間全体):(直接経費) 3,200,000円

研究成果の概要(和文):本研究では燃焼中に生成される化学種のうち,すすの生成および酸化に関係するC2およびOHラジカルの自発光の時空間分布の計測と,壁面に設けた同軸型熱電対による壁面温度計測を組み合わせて,すすの生成量と,すすの輻射熱伝達および燃焼による高温ガスの対流熱伝達の時空間分布を同時に評価できる手法を考案した.異なる芳香族分を含む2種類の供試燃料を用い,噴射特性も変更してすすの生成と壁面熱損失について評価した.その結果,試験燃料によるすすの生成や,すすの輻射熱伝達および燃焼ガスによる対流熱伝達の時空間分布の違いを示し,さらに噴射特性を変更することで,すす生成の抑制効果や壁面熱損失の時空間 分布の違いを示した.

研究成果の学術的意義や社会的意義 本研究で開発した計測手法は,燃料組成の違いによるすすの生成や,壁面熱損失の違いを同時に評価でき,さら に燃料の噴射特性によるすすの生成や壁面熱損失の違いも評価可能である.また本研究で示された結果は,すす の排出量や壁面熱損失の時空間分布として得られており,燃焼室内におけるすすの生成から消滅,さらには高温 ガスによる壁面熱損失の様子が示された.これらは,燃料設計やエンジン設計をする上で重要な情報であり,す すの排出量と温室効果ガスを同時に削減し,環境に配慮した開発を行うための評価ツールとなると考えられ,喫 緊の課題である温室効果ガスの削減等に重要な役割を果たすことが可能である.

研究成果の概要(英文):A method by combining measurements of the temporal and spatial distribution of C2 and OH radicals related to soot formation and oxidation and wall surface temperature measurements using coaxial thermocouple installed on the wall surface was devised to evaluate the amount of soot formation, radiation heat transfer of soot, and convective heat transfer of hot gases by combustion. Two test fuels with different aromatic contents and different injection characteristics were used to evaluate soot formation and wall heat loss. The results showed differences in the temporal and spatial distributions of soot formation, radiation heat transfer of soot, and convective heat transfer by combustion gases, as well as in the suppression of soot formation and wall heat loss by changing the injection characteristics.

研究分野:船舶海洋工学

キーワード: 低硫黄燃料油 すすの生成と酸化 壁面熱損失 化学自発光

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1.研究開始当初の背景

2020年1月より,一般海域における舶用燃料油中の硫黄分は3.5%から0.5%へと規制値が引き 下げられ,その規制に対応するために,硫黄分が少ない分解軽油との混合利用が想定されている. 分解軽油は芳香族分を多く含んでいるが,この芳香族分は燃焼中の低酸素高温場においてC₁ お よびC₂系の炭化水素まで分解され,その後再度芳香族を形成し,多環芳香族による核生成およ び凝集,表面成長を経てすすを形成する.したがって低硫黄分燃料油は,芳香族分の多い分解軽 油の混合率が増えたことにより,結果的にすすの排出量が多くなる可能性がある.また,地球温 暖化の観点から,二酸化炭素の排出量の削減も同時に求められている.エンジン燃焼で得られる エネルギのうち,30%弱は冷却損失として燃焼室壁面を通じて外部へと捨てられており,二酸化 炭素削減のためには壁面近傍における火炎の様子やヒートバランスの解析を行うことが重要で ある.したがって,すすと二酸化炭素の生成を同時に抑制するためには,燃焼時のすすの生成お よび酸化現象と,壁面熱損失の現象を同時に計測し評価する手法が必要である.

一方,内燃機関の燃焼手法を検討する上で,すすと二酸化炭素の同時抑制にはパラメータとして何が効果的であり,パラメータ同士の相互作用について把握する必要であるが,これらを系統的に纏めた事例は見当たらない.したがって,すすと二酸化炭素の同時抑制を実現するための燃焼手法の開発には,計測手法の開発と同時に,計測で得られた結果を系統的にまとめ,燃焼手法の開発の指針となるパラメータおよびデータを示す必要がある.

2.研究の目的

本研究では,低硫黄燃料油にLCOが多く含まれることを想定し,すすの生成と酸化に関係があるとされる C2 および OH ラジカルの時空間分布と,燃焼解析や壁面温度解析を連成する解析手法を考案し,その解析手法をディーゼル拡散火炎に適用することで,燃料油中の芳香族の違いがすすの生成と壁面熱損失へ及ぼす影響を調査した.

3.研究の方法

(1)実験装置

図1に実験装置の概略図,表1に実験条件を示す.本研究では,舶用ディーゼルエンジンの1 サイクルの燃焼を模擬できる,油圧駆動式の急速圧縮装置を使用した 吸気には乾燥空気を用い, 燃料噴射開始時期における雰囲気圧力および温度が,それぞれ4.8 MPa,915±20 K になるよう に調整して急速圧縮装置内へと供給される.ピストン直径は100 mm,深さ30 mmであり,燃焼 室形状は圧縮比を考慮しつつ燃料噴霧が壁面に付着しないような形状とした.ピストンリング は無潤滑で使用可能なものを採用し,潤滑油によるすす生成への影響が無いようにした.さらに 急速圧縮装置の前面には,燃焼室の様子を観察するための石英ガラス製の観察窓を設けている. 燃料噴射装置にはコモンレールディーゼルエンジン用ソレノイド式インジェクタ(Denso,噴孔 径0.2 mm)を用いた.燃料噴射圧力は40 MPa から130 MPa まで,30 MPa 毎に変化させた.燃料

噴射期間は,火炎が燃料噴射下流側の 壁面に付着する場合と付着しない場 合を比較するために,3.0 ms と 1.0 msの2種類とした.燃焼解析には,燃 焼室壁面に設けられたピエゾ式圧力 センサー(Kistler,6041A)にて燃焼 時の圧力を計測し,熱発生率等の解析 を行った.インジェクタの対向壁面に は,壁面からの熱流束を計測するため の同軸型熱電対(Medtherm, TCS-103-J) が取り付けられている.ここで得 られる熱流束は,対流熱伝達による熱 流束と輻射熱伝達による熱流束を合 わせた全熱流束となっている.燃焼 後の排出ガスは,粒子状物質の排出 量を評価するために, 排気管の途中 に設置された粒子状物質の捕集用フ ィルタを通過する.ここで捕集した 粒子状物質は,スモークメーターに て汚染度を計測することで,粒子状 物質の排出量を評価した.

図1 実験装置の概略図

表1 実験条件

Ambient pressure	[MPa]	4.8
Ambient temperature	[K]	915 ± 20
Injection pressure (Pinj)	[MPa]	130, 100, 70, 40
Injection duration (τ_d)	[ms]	3.0, 1.0

(2) ラジカル計測のための光学系

本研究では,燃焼中に生成される C2 ラジカルおよび OH ラジカルの時空間変化を計測すること

で,すすの生成を評価することを試みた. その計測に用いた光学系の概略図を図 2 に示す.燃焼による C₂および OH ラジカ ルの自発光分布は,凹面鏡およびミラー を介して2分岐光学系へと導入される. 2 分岐光学系の概略図を図 3 に示す .2 種 類のラジカルの画像を 1 台の高速度ビデ オカメラで撮影するために,まずダイク ロイックミラーで被写体を2つに分け 片方はC₂ラジカルの自発光を透過させる 520nm バンドパスフィルタ,もう一方は OH ラジカルの自発光を透過させる 310nm バンドパスフィルタを介して, 各ラジカ ル画像を平行に配置するためのミラーを 通過する.その後平行に配置された C2 ラ ジカルおよび OH ラジカルの像は.UV 対 応の単焦点レンズ(Nikon, UV nikkor, 焦 点距離 105mm), イメージインテンシファイ ア(Invisible Vision, UVi)を介して,高速 度ビデオカメラ(nac image technology, HX-3)で撮影する,撮影速度は10,000 fps とし,空間分解能は640 x 540 pixel で あり, C2 および OH ラジカルの自発光像を 並べて投影している .なお ,C₂ラジカルの 自発光強度がOHラジカルの自発光強度よ りも大きく,イメージインテンシファイ

アの計測範囲を超えてしまうため,いずれのラジカルの自発光強度が同程度になるように,NDフィルタを用いて C₂ ラジカルの自発光強度を調整した.

(3)供試燃料

表2に本研究で使用した燃料の 基材の特性について示す.すすの 生成は燃料油中の化学組成の影 響を受けるが,着火遅れに起因し て空気と燃料油の混合時間の影 響も受けてしまう.そこで本研究 では,着火遅れをできるだけ揃え てすすの生成に対する燃料油中

表2 燃料基材の特性

Base material		Toluene	1-Methylnaphthalene	n-Hexadecane
Chemical formula		C ₇ H ₈	C ₁₁ H ₁₀	C ₁₆ H ₃₄
Density	[kg/m ³]	867	1020	775
Cetane number ^[1]		6	0	100
C/H ratio		0.875	1.1	0.47

の芳香族の影響を見るために,側鎖が同じでセタン価が近い液体の芳香族である,単環のトルエンと二環の1-メチルナフタレンを選定した.これら芳香族を,それぞれ体積割合が60%になるようにヘキサデカンを調合したものを試験燃料とした.1-メチルナフタレンおよびヘキサデカンはセタン価標準燃料であり,セタン価はそれぞれ0と100である.これに対しトルエンのセタン価は6程度^[1]と示されており,セタン価は1-メチルナフタレンと比べて若干高い.そのため試験燃料のセタン価は,1-メチルナフタレンが60%の場合(以下M-60とする)は0,トルエン60%の場合(以下T-60とする)は43.6と推定される.セタン価についてはこの程度の差を有した試験燃料で実験を行った.

ば、画像1コマに存在するラジカルの総数に相当する値が得られる.この値を本研究ではラジカ ル積算輝度と定義し、燃料噴射開始からラジカルが消滅するまでの積算輝度の時間変化を求め

(4)解析手法

図4 に本研究における画像 解析手法を示す.画像中の1ピ クセルから得られる輝度値は, 燃焼室深さ方向に存在する各 ラジカルの自発光強度の積算 値であると考えられる.ラジカ ル1 個の自発光強度が一定で あると仮定すれば,1ピクセル の輝度値はラジカルの数密度 に比例する.したがって,高速 度ビデオカメラで撮影した画 像1コマに対し,1ピクセルの 輝度値を画像全体で積算すれ

た.本研究では,一色ら^[2]が考案した壁面温度近似手法を利用した.熱流束の算出は,微小時間 中(本研究ではサンプリング間隔)に計測した壁面温度を折れ線近似することで時間に対する温 度勾配を求め,その温度勾配を Duhamelの原理に従って重ね合わせることで,次式に示すある時 刻(t₀<t<t_{nt1})における壁面を通過する熱流束 q [W/m²]を算出している.

$$q\big|_{t_n \leq t \leq t_{n+1}} = \frac{2\lambda_w}{\sqrt{\pi\alpha_w}} \sum_{i=0}^n \left[(k_i - k_{i-1})\sqrt{t - t_i} \right]$$

ここで q は壁面を通過する熱流束[WW/m²], λ_w は壁面の熱伝導率[W/mK], α_w は温度伝導率[m²/s],kは 微小時間 Δ t における温度勾配[K/s]である.本研究では, λ_w =67.4[W/mK], α_w =18.6 x 10⁻⁹[m²/ms]とした.

4.研究成果

図 5 に噴射圧力に対する各試験燃料の 着火遅れを示す.結果は噴射期間3.0 ms に設定したものである.いずれの試験燃料 においても、噴射圧力および噴射期間に寄 らず,概ね平均値で1.2 から1.4ms 程度 のところに存在している.試験燃料のセタ ン価の違いは3.6 程度であったが,その差 が顕著にあらわれるほどの着火遅れの差 異は見られなかった.

図 6 に各試験燃料および噴射期間にお ける 噴射圧力に対するすすの排出結果を 示す .本研究では ,噴射圧力を変化させる と燃料噴射量も変化する .そのためすすの 排出量に燃料噴射量の影響が含まれてし まうため,これをキャンセルするために すすの汚染度を燃料噴射量で除した値を図 6 にプロットしている.いずれの試験燃料 および噴射期間でも,噴射圧力の増加に伴 ってすすの排出量は少なくなる.試験燃料 別でみると, 概ね M-60 のほうが T-60 より もすすの排出量が多くなっていることがわ かる.噴射期間で見ると,いずれの試験燃 料においても噴射期間が短い方がすすの排 出量が多くなっている.噴射期間の短い条 件では筒内圧力も低いことから,筒内温度 も低いことが考えられる.そのため燃料の 熱分解が進行しにくく ,単位燃料当りでは すすの排出量が多くなったと推察される.

図 7 に,試験燃料を変えた場合の C₂お よび OH ラジカルの積算輝度の時間変化, 熱流束 ,および熱発生率を示す . 結果は噴 射圧力を130 MPa,噴射期間を3.0 ms に 設定したものである.C₂ および OH ラジカ ル積算輝度を見ると,熱発生率の上昇とは 異なり発光開始から単調に上昇し,最大値 を迎えた後に単調に減衰している様子が 確認できる.また C₂ ラジカル積算輝度が 最大値に到達するタイミングは,熱発生率 が最終的に減少に転じるタイミングとほ ぼー致していることがわかる .熱発生率が 最終的に単調に減衰して燃焼が終了とな るが,C2ラジカルの積算輝度においても熱 発生率と同様の減衰傾向が見られ,熱発生 の終了ともに C2 ラジカルの発光も終了す る、これに対し熱流束の算出結果を見る と,熱発生率の開始や各ラジカルの発光開 始時期よりも遅れて波形が立ち上がり ,そ の後急峻な上昇の後に最大値に到達する. 熱流束の最大値に到達するタイミングは

図中に示した火炎の壁面衝突のタイミングにほぼ一致している.その後,熱流束は熱発生率と比べて緩やかに減衰している様子がわかる.これに対し OH ラジカル積算輝度を見ると,発光開始

の時間はC2ラジカルとほぼ同じであるが, OH ラジカル積算輝度は緩やかに上昇し最 大値を取る、OH ラジカル積算輝度の最大 値と熱流束の最大値は,ほぼ同じタイミン グであることがわかる.その後 OH ラジカ ルは減衰するが、その傾向は熱流束の減衰 と概ね一致していることがわかる これら のことから、C2 ラジカル積算輝度の最大値 からの減衰は熱発生率の減衰と関係があ り, OH ラジカル積算輝度の最大値からの 減衰は熱流束との関係があることがわか る.試験燃料の違いで見ると,C2ラジカル 積算輝度は発光開始から最大値にかけて, M-60 のほうが概ね高い値を示している. OH ラジカル積算輝度については,全体的 に M-60 のほうが高い値を示しているが, C2 ラジカルに比べると試験燃料の違いは 僅かであった.

図 8 に,燃料噴射軸上(以下 X 軸とす る)における C₂ ラジカルの発光強度を示 す.噴射圧力は130MPa,噴射期間は3.0 ms としている.噴射開始後2.0 ms では概ね M-60 のほうが C₂ ラジカルの発光強度は X 軸全体で高い値を示している . その後発 光領域の発達ともに発光強度も増加する が,噴射開始後4.0 ms では, M-60の発光 強度が高い領域は,X = 30 mm から80 mm の領域へとシフトし,80 mmから100 mmの 領域では、 C₂ ラジカルの発光強度に試験 燃料による顕著な差は見られない.その後 C₂ラジカルの発光強度は燃焼終了ともに減 衰し,X = 100 mm の壁面近傍に滞留してい る様子が見られるが,試験燃料による顕著 な違いは見られない.

同様に X 軸上の 0H ラジカルの強度に対 する試験燃料の影響についても調べた.図 9 に噴射圧力 130 MPa,噴射期間 3.0 ms に おける X 軸上の 0H ラジカル発光強度を示 す. C_2 ラジカルの場合と異なり,噴射開始 後 2.0 ms から 4.0 ms 程度までは, X 軸上 全体において試験燃料による 0H ラジカル の発光強度の明確な差異は見られない.そ の後,燃焼終了とともに 0H ラジカルの発 光強度は減衰し, X = 100 mm の壁面近傍に 滞留する.

以上の結果をまとめると 図6において, 単位燃料当りのすすの汚染度は概ね M-60 のほうが多くなることを示したが,その原 因は,燃焼期間中のノズル出口30mmから 80mmにおけるC2ラジカルの発光強度が強 いことである.これはすなわち,燃料噴霧 への空気導入量が少ない領域において,M-

60 の場合には燃焼中に C₂ ラジカルの生成量が多いことがすすの汚染度の増加に繋がったという ことを示している.また図7で示した壁面熱流束の結果は,試験燃料の違いに対する明確な差異 が見られなかったが,これはノズル出口との対向壁面において,C₂および OH ラジカルの発光強 度とも試験燃料の違い対する明確な差異が見られなかったためと考えられる.つまり燃料噴霧 への空気導入量が十分な領域では,C₂および OH ラジカルの発光強度に対する試験燃料の影響が 小さくなってしまい,その結果,壁面熱流束についても明確な差異が生じなかったと考えられる.

< 引用文献 >

[1] Yanowitz, J., et. al., Compendium of Experimental Catane Numbers, National Renewable Energy Laboratory (2014) [2]一色他,機論(第2部), 39巻, 328号, pp.3760-3770(1973-12)

5.主な発表論文等

- 〔雑誌論文〕 計0件
- 〔学会発表〕 計0件
- 〔図書〕 計0件
- 〔産業財産権〕

〔その他〕

-6.研究組織

0			
	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
研究分担者	川内 智詞 (KAWAUCHI Satoshi)	国立研究開発法人海上・港湾・航空技術研究所・海上技術安 全研究所・研究員	
	(20549993)	(82627)	
研究分担者	高木 正英 (TAKAGI Masahide)	国立研究開発法人海上・港湾・航空技術研究所・海上技術安 全研究所・研究員	
	(50371092)	(82627)	

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

相手方研究機関