

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成 25 年 6月 11 日現在

機関番号 研究種目 研究期間 課題番号	+:14401 :基盤研究]:2010~2012 +:22246043	(A) 2
研究課題	名(和文)	強相関電子材料における光テラヘルツ波機能の創製
研究課題 Material	名(英文) s	Construction of Optical-Terahertz Function in Strong Correlated
研究代表	者 斗内 政吉 大阪大学・ 研究者番号	(TONOUCHI MASAYOSHI) レーザーエネルギー学研究センター・教授 : 40207593

研究成果の概要(和文):

強相関電子材料をはじめとする次世代電子デバイス材料中のキャリアの超高速時空間評価を可能とするため、ダイナミックレーザーテラヘルツ放射顕微鏡の構築を行った。 また高強度テラヘルツ分光装置の開発を行い、ペロブスカイト型酸化物高温超伝導体 YBa₂Cu₃O_{7-δ}における超伝導キャリアの抑制、および強誘電体 SrTiO₃におけるスレーターモ ードのシフトなど、テラヘルツ非線形光学効果の観察に成功した。

研究成果の概要(英文):

We have developed a dynamic laser terahertz emission microscope to observe ultrafast carrier dynamics at a high-spatial resolution in next generation electronic materials including strong correlated materials. On the other hand, we have developed an intense terahertz spectroscopy system using pulse-front tilting method and succeeded in the observation of terahertz non-linear effect in an oxide high Tc superconductor $YBa_2Cu_3O_{7-\delta}$ and a ferroelectric material $SrTiO_3$.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
22 年度	25, 600, 000	7, 680, 000	33, 280, 000
23 年度	6, 400, 000	1, 920, 000	8, 320, 000
24 年度	6, 100, 000	1, 830, 000	7, 930, 000
年度			
年度			
総計	38, 100, 000	11, 430, 000	49, 530, 000

研究分野:工学

科研費の分科・細目:電気電子材料・電子・電気材料工学

キーワード:テラヘルツ,強相関電子材料,非線形光学効果,酸化物高温超伝導体,強誘電体

1. 研究開始当初の背景

強相関電子材料では、物質内で異なる自由度 (スピン、電荷、磁気秩序等)が強く相互作 用することにより生じる、巨大磁気抵抗効果、 金属・絶縁体転移やマルチフェロイック効果 などの特異な量子物性を発現することから、

次世代の新機能デバイス材料として大いに 期待されている[1]。研究対象は幅広く、精力 的に研究されている。しかしながら、その複 雑さゆえ、いまだ不明な点も多く、特に、光 機能に関する研究は少ない。申請者は、早く から、フェムト秒レーザー励起によるテラへ ルツ発生など、強相関物質の光・テラヘルツ 科学に取り組み、マンガン酸化物における電 荷密度波励起・光誘起絶縁体金属相転移の観 測、強誘電体の光アシスト自発分極反転スイ ッチング効果の発見など、世界に先駆けた成 果を挙げてきた[2,3]。

ー方、テラヘルツ分野は、新しい重要分野として注目を集めている[4]。その重要な課題として、高強度コヒーレントテラヘルツ光源・検出器の開発などがある。これまでに対象とされてきた物質は限定的で、様々な探索的アプローチが必要とされている。

[1] Y. Tokura, Science 312 (2006) 1481

[2] N. Kida et al., in Terahertz Optoelectronics (Springer-Verlag, Berlin, 2005) pp275-334.

[3] D. Rana, et al., Advanced Materials, 21 (2009) 2881.

[4] M. Tonouchi, Nature Photonics, 1 (2007) 97.

2. 研究の目的

本研究は、次世代電子材料・デバイス開発に 資する強相関電子材料の新規な光・テラヘル ツ波機能を探索・創製すること、並びに、そ のために新しい研究手法を開拓し、大きな波 及効果を生み出すことがねらいである。 具体的には、高強度テラヘルツ波分光装置を 構築し、強相関電子材料、特にペロブスカイ ト型強誘電体および高温超伝導体における テラヘルツ非線形効果などの物性探索を行 い、新規材料のテラヘルツ・光機能の創製と デバイスへの応用の可能性を探る。また、強 相関物質の局所場科学からドメイン制御や 光機能の創製の実現を目指すため、これまで にないダイナミックレーザーテラヘルツエ ミッション顕微鏡の開発を行い、その高空間 分解能化に取り組む。

研究の方法

本研究では、

(1)強相関物質などからの局所的なテラヘルツ波発生を観測し、強相関電子材料の新しい機能の探索と解明を行うため、新規レーザーテラヘルツ放射顕微鏡(LTEM) として、局所場光励起が可能であり、ポンプ・プローブ計測可能なダイナミック LTEM を開発し、高機能電子材料開発のための基盤を築く。

(2)従来の時間領域テラヘルツ分光法により,強相関電子材料,特にペロブスカイト型 強誘電体薄膜のテラヘルツ周波数領域での 物性を明らかにする。

(3)これまでテラヘルツ波による非線形効 果は未知の研究領域であったが、高強度テラ ヘルツ波を発生可能な分光装置を開発し、強 相関電子材料や超伝導体における非線形効 果の観測を行い、光テラヘルツ波物性を明ら

図1.ダイナミックレーザーテラヘルツエ ミッション顕微鏡の概略図。

図2.低温成長ガリウム砒素(LT-GaAs) 基板上のダイポール型光伝導スイッチから 放射されたテラヘルツ電磁波の様子。 (a)試料電極形状(黒い領域が金電極)(b) ポンプ光を電極間中央部に照射(c)ポンプ 光を+電極付近に照射(d)ポンプ光を-電 極付近に照射。

かにする。

4. 研究成果

(1)ダイナミックテラヘルツ放射顕微鏡の 構築および半導体光スイッチのキャリアダ イナミクスの評価

電子材料における超高速電荷ダイナミク スを観測し評価するため図1に示すような ダイナミックテラヘルツ放射顕微鏡を構築 した。このシステムを用いて、低温成長ガリ ウム砒素 (LT-GaAs) 基板および半絶縁性ガ リウム砒素 (SI-GaAs) 基板上のダイポール 型光伝導スイッチの測定を行った。図2に LT-GaAs 基板上に作製した光スイッチを用い て観測した結果を示す。用いた光伝導スイッ チの形状を図 2a に、またポンプ光照射位置 を電極中央、+電極側、および-電極側 と したときのテラヘルツ放射の様子をそれぞ れ図 2b、2c および 2d に示す。測定では、光 伝導スイッチの電極間距離が 5µm のものを用 い、ポンプ光とプローブ光のパワーおよびビ ーム径は、それぞれ 30mW・8µmφ、1mW・1µmφ とし、電極へのバイアス電圧を 10V としてい る。ポンプ光を+または-電極付近に照射し た場合、ポンプ光照射と反対側の電極付近で

強いテラヘルツ放射が見られた、これは従来 のポンプープローブ時間領域評価法では観 測することができなかった現象である。また、 ポンプ光とプローブ光の時間差を変化させ てイメージをとることにより、ポンプ光励起 キャリアが緩和されていく様子も連続的に 観測できた。このシステムを用いることによ り,空間分解能で1 μm 程度,時間分解能で 0.1ps でのキャリアのダイナミックな挙動に ついて観察することに成功しており、今後現 在開発を進めている近接場光を使ったレー ザーテラヘルツ放射顕微鏡にこの手法を適 用して,マルチフェロイック材料からの強誘 電ドメイン構造など、よりミクロ領域からの テラヘルツ放射機構の解明を行う予定であ る。

(2) ペロブスカイト型強誘電体薄膜のテラ ヘルツ物性に関する研究

ペロブスカイト型強誘電酸化物 SrTiO₃(STO) や SrRuO₃(SRO)等は、その興味深い物性とデ バイス応用の可能性から広く研究され続け ている。これら強誘電体薄膜を作製し,テラ ヘルツ時間領域分光法によるテラヘルツ物 性の評価を行った。その一例として,SRO に 関する結果を以下に示す。

SR0 は他の酸化物と比較して高い電気伝導性 を持ち、約 160K 以下で強磁性を示す。また ペロブスカイト関連構造を持つ遷移金属酸 化物との格子整合が良いために、酸化物を用 いたデバイスの下部電極やスピントロニク

図 3. DyScO₃(110) 基板上に作成した SrRuO₃薄膜の (a) AFM 像 と (b) 光学伝 導度の周波数依存性

スへの応用が期待されている。

本研究ではSRO 薄膜を様々な基板の上に作成 し、SRO 薄膜と基板の格子ミスマッチによる 歪みがもたらす電気的・磁気的・光学的特性 の変化を観察した。その一例として、テラへ ルツ時間領域分光法(THz-TDS)により測定し た光学伝導度の結果を示す。

図 3 (a) は DySc0₃(110) 基板上に成膜した SRO 薄膜の AFM 像および, (b) テラヘルツ時間領 域分光で測定した、室温における光学伝導度 の周波数依存性である。これより SRO 薄膜の 表面は一様な分子層ステップが見られ、非常 に高い平坦性を持っていることが分かる。ま た、0.2 THz における SRO 薄膜の光学伝導度 の値は DSO[110] 方向、DSO[001] 方向について それぞれ 3600 Ω^{-1} cm⁻¹ と大きな異 方性が見られた。一方、立方晶である MgO 基 板などに作成した SRO 薄膜では異方性は観測 されなかった。このことから、SRO/DSO(110) 薄膜に 見られる 光学伝導度の 異方性は DSO(110) の面内異方性にともなう格子歪み によるものと考えている。

(3)高強度テラヘルツ分光装置の構築とテ ラヘルツ非線形光学効果に関する研究

図 4. パルス面傾斜法を利用した高強度テ ラヘルツ分光装置の概略。

テラヘルツ波は新しい光源として脚光をあ び、様々な発生方法やその物理、また発生し たテラヘルツ波の応用研究が進展している。 特に、高強度化の流れは著しく、ハイパワー レーザーを利用したパルス面傾斜法による テラヘルツ波発生法では従来の手法の4桁以 上もの高強度テラヘルツ波の発生が可能と なり始めている。高強度テラヘルツ波発生は 光物性研究のブレークスルーになると期待 されており、高強度テラヘルツ波パルスを用

図5. 高強度テラヘルツパルスを使った YBCOの時間領域テラヘルツ分光。(a)時間 領域透過波形の電界強度依存性。(b)複素光 学伝導度の周波数および電界強度依存性。

いることでテラヘルツ帯非線形光学効果の ような未開拓物理現象の研究が可能になる。 本研究においても、図4に示すようなパルス 面傾斜法によるテラヘルツ放射・分光装置を 構築し、強相関電子材料である酸化物高温超 伝導体および強誘電体におけるテラヘルツ 帯の非線形光学効果に関する研究を行った。 図5に酸化物高温超伝導体 YBa₂Cu₃O₇₋₆ (YBCO) における測定結果を示す。図5(a)はテラへ ルツ電界強度 E₀および E₀/8 (ただし, E_=30kV/cm)のテラヘルツの時間領域透過ス ペクトルを,図5(b)は複素光学伝導率の周 波数および電界強度依存性を示している。図 5 (a)において,超伝導転移温度 Tc において 時間領域波形の大きな違いは見れないもの の, Tc 以下の 34K においては電界強度の違い による明らかな位相シフト、および振幅の変 化が観測された。また、この時間領域波形を 元に分光解析した結果の図5(b)においては, 超伝導電子対密度とともに増加する複素伝 導率の値が,1THz以下の周波数帯域にも関わ らず、電荷強度を増すにしたがって減少して いく様子が観測された。

一般に酸化物高温超伝導体 YBC0 のエネルギ ーギャップの大きさは40-50meV 程度とされ ており、今回照射したテラヘルツのエネルギ ー(<3meV 程度)に比べて十分大きく、この 観測された結果はテラヘルツ電磁波の電界 強度による非線形光学効果と考えられる。

またペロブスカイト型強誘電体薄膜 SrTiO₃

においても、テラヘルツ非線形光学効果によるソフトモード振動(スレーターモード)の シフトの観測に成功した。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計36件)

- Ryuhei Kinjo, Iwao Kawayama, Hironaru Murakami and <u>Masayoshi Tonouchi</u>、 Strain-Induced Ferroelectricity of a SrTi03 Thin Film on a MgAl204 Substrate Observed by Terahertz Time-Domain Spectroscopy、Journal of Infrared, Millimeter, and Terahertz Waves、査読有、 33 巻、(2012)、67-73
- ② <u>I. Katayama</u>, H. Aoki, J. Takeda, H. Shimosato, <u>M. Ashida</u>, R. Kinjo, I. Kawayama, <u>M. Tonouchi</u>, M. Nagai, K. Tanaka、 Ferroelectric Soft Mode in a SrTiO3 Thin Film Impulsively Driven to the Anharmonic Regime Using Intense Picosecond Terahertz Pulses、PHYSICAL REVIEW LETTERS 、查読 有、108 巻、(2012)、097401
- ③ Caihong Zhang, Yuri Avetisyan, Andreas Glosser, Iwao Kawayama, Hironaru Murakami, and <u>Masayoshi Tonouchi</u>, Bandwidth tunable THz wave generation in large-area periodically poled lithium niobat, Optics Express、査読有、20 巻、(2012)、8784-8790
- ④ Christophe Fumeaux, Hungyen Lin, Kazunori Serita, Withawat Withayachumnankul, Thomas Kaufmann, <u>Masayoshi Tonouchi</u>, and Derek Abbott、Distributed source model for the full-wave electromagnetic simulation of nonlinear terahertz generation、Optics Express、査読有、20 巻、(2012)、18397-18414
- ⑤ Yuri Avestisyan, Caihong Zhang, Iwao Kawayama, Hironaru Murakami, Toshihiro Somekawa, Haik Chosrowjan, Masayuki Fujita, and <u>Masayoshi Tonouchi</u>, Terahertz generation by optical rectification in lithium niobate crystal using a shadow mask, Optics Express、査読有、20 巻、(2012)、 25752-25757
- ⑥ Caihong Zhang, Biaobing Jin, Andreas Glossner, Lin Kang, Jian Chen, Iwao Kawayama, Hironaru Murakami, Paul Müller, Peiheng Wu, and <u>Masayoshi Tonouchi</u>, Pair-breaking in superconducting NbN films induced by intense THz field、J Infrared Milli Terahz Waves、査読有、33 巻、(2012)、 1071-1075

- ⑦ Caihong Zhang, Biaobing Jin, Jiaguang Han, Iwao Kawayama, Hironaru Murakami, Jingbo Wu, Lin Kang, Jian Chen, Peiheng Wu, and <u>Masayoshi Tonouchi</u>, Terahertz nonlinear superconducting metamaterials 、Applied Physics Letter、査読有、102 巻、(2013)、 081121
- ⑧ Caihong Zhang, Yuri Avetisyan, Gevorg Abgaryan, Iwao Kawayama, Hironaru Murakami, and <u>Masayoshi Tonouchi</u>, Tunable narrowband terahertz generation in lithium niobate crystal using a binary phase mask, Optics Letter、査読有、38 巻、(2013)、 953-955
- ① I. Katayama, H. Aoki, J. Takeda, H. Shimosato, <u>M. Ashida</u>, R. Kinjo, I. Kawayama, <u>M. Tonouchi</u>, M. Nagai, and K. Tanaka、Ferroelectric soft mode in a SrTi03 thin-film impulsively driven to the an-harmonic regime using intense picosecond terahertz pulses、 Phys. Rev. Lett、査読有、108 巻、 (2012)、 097401-1-5
- Rakesh Rana, D. S. Rana, K. R. Mavani, I. Kawayama, H. Murakami, and <u>M. Tonouchi</u>, Charge density wave excitations in stripe-type charge ordered Pr0.5Sr0.5Mn03 manganite 、Applied Physics Letter、査読 有、101 巻、(2012)、252401-1-4

〔学会発表〕(計28件)

- ① <u>Masayoshi Tonouchi</u>, Terahertz Emission from BiFeO₃, The 8th Japan-Korea Conference on Ferroelectrics, 2010. 8.4, Egret Himeji
- (2) <u>Masayoshi Tonouchi</u>, THz Radiation by Optically Controlled Depolarization in BiFeO₃, The 35th International Conference on Infrared, Millimeter, and Terahertz Waves, 2010. 9. 6, Angelicum, Pontificia Università San Tommaso d' Aquino, Largo Angelicum 1, Roma
- ③ <u>斗内政吉</u>、Laser terahertz emission microscope、日本顕微鏡学会第67回学術講 演会、2011.5.17、福岡国際会議場
- ④ <u>M. Tonouchi</u>, Scanning Laser Terahertz Emission Imaging System"、 Microwave/Terahertz Sience and Applications 2011、2011. 6. 21、 中国 南京 大学
- (5) <u>Masayoshi Tonouchi</u>, Pulsed THz wave generation and detection with high-Tc Josephson junction, The 6th East Asia Symposium on Superconductor Electronics, 2011. 10. 28, Yamagata University

- ⑥ 藤原 昌悟, <u>斗内 政吉</u>、テラヘルツエミッタ ーのダイナミック光応答観測、集積光デバイ スと応用技術時限研究専門委員会(IPDA)、 2011.11.16、芝浦工業大学 豊洲キャンパス 交流棟4階401教室
- Masayoshi Tonouchi, Cutting-edge terahertz technology and prospect of its application, SPIE Photonics West 2012, 2012. 1.24, Moscone Center, San Francisco, California, USA
- (8) Caihong Zhang, Yuri Avetisyan, and <u>Masayoshi Tonouchi</u>, Band-tunable THz time domain source for device evaluation, Semiconductor Sources and Detectors of THz radiation, 2012. 4. 25, Hotel Montana in Tignes, France
- Gaihong Zhang, Andreas Glossner, Paul Müller and Masayoshi Tonouchi 、 Intense-THz-Field Response of YBa₂Cu₃O_{7-δ} Thin Films、11th International Symposium on High Temperature Superconductors、2012. 5. 30、Miyagi, Japan
- Masayoshi Tonouchi, Understanding the Nature of Ultrafast Polarization Dynamics of Ferroelectric Memory in the Multiferroic BiFeO₃, 4th International Conference on Smart Materials, Structures and Systemsw, 2012. 6. 14, Luft Montecatini Terme

[その他]

ホームページ等

http://www.ile.osaka-u.ac.jp/research/t
hp/index.html

6. 研究組織

- (1)研究代表者
 斗内 政吉 (TONOUCHI MASAYOSHI)
 大阪大学・レーザーエネルギー学研究センター・教授
 研究者番号: 40207593
- (2)連携研究者 田中 耕一郎 (TANAKA KOICHIRO) 京都大学・物質 – 細胞統合システム拠点・教授 研究者番号:90212034

森 茂夫 (MORI SHIGEO) 大阪府立大学・工学研究科・教授 研究者番号:20251613

片山 郁文(KATAYAMA IKUHUMI)横浜国立大学・学際プロジェクト研究センター・教授研究者番号:80432532

藤村 紀文(FUJIMURA NORIHUMI) 大阪府立大学・工学研究科・教授 研究者番号:50199361

芦田 昌明 (ASHIDA MASAAKI)大阪大学・基礎工学研究科・教授研究者番号:60240818