

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成25年5月24日現在

機関番号:11301				
研究種目:基盤研究(C)			
研究期間:2010~	~ 2 0 1 2			
課題番号:22540	0361			
研究課題名(和文)	ネプツニウム化合物の新奇量子状態のNp-237メスバウアー分光解析			
研究課題名(英文)	$Np\mathcal{-}237$ Mössbauer Spectroscopy on the exotic quantum states of Neptunium compounds.			
研究代表者:				
本間 佳哉(HOMMA	YOSHIYA)			
東北大学・金属材料研究所・助教				
研究者番号:002	260448			

研究成果の概要(和文):酸化物を原料とするカップリングリダクション法を用いた²⁴¹Am-Pd 合金線源の製造法を確立し、²³⁷Npメスバウアー線源として高分解能をもたらすことを実証した。 強放射能、高エネルギーγ線対応の分光器の開発を合わせて行い、定常的な²³⁷Npメスバウア ー分光測定システムを我が国で初めて開発した。

研究成果の概要(英文): We demonstrate that the ²⁴¹Am-Pd alloy produced by the coupling reduction process of AmO₂ and Pd powder brings a high resolution ²³⁷Np Mössbauer spectrum. We built up the ²³⁷Np Mössbauer spectroscopy system for applying solid state physics of the transuranium compounds and the nuclear fuels.

			(金額単位:円)
	直接経費	間接経費	合 計
2010 年度	1, 700, 000	510, 000	2, 210, 000
2011 年度	800, 000	240, 000	1, 040, 000
2012 年度	800, 000	240, 000	1, 040, 000
年度			
年度			
総計	3, 300, 000	990, 000	4, 290, 000

研究分野:数物系科学 科研費の分科・細目:物理学・物性 II キーロード・Misshanen anathragen activide 56 electrone and training

キーワード : Mössbauer spectroscopy, actinide, 5f electrons, neptunium, 237 Np, 241 Am

1. 研究開始当初の背景

交付決定額

²³⁷Np メスバウアー分光は、マイナーアク チノイドである Np の価数状態、電荷状態、 磁気状態を敏感に観測できるプローブであ る。メスバウアー効果が発見された数年後に は着手され、1970 年代には G.M. Kalvius に より定常的な分光技術として確立した。アメ リカ、ヨーロッパ、ロシアの主要原子力機関 においてその分光法は普及したが、冷戦後は、 欧州超ウラン元素研究所(ITU)においてその 技術が継承されるのみとなった。我が国では、 日本原子力研究所の佐伯、中田らが 1990 年 代前半に²³⁷Npメスバウアー分光に着手した。 Np 錯体の価数評価に対して一定の成果を収 めたが、ロシアから購入した²⁴¹Am 金属線源 (200 MBq)の劣化により、Np 磁性化合物や 酸化物燃料の評価を行うには至っていない。 その後 2003 年より東北大学と日本原子力研 究所のメンバーにより我が国初の超ウラン 化合物の物性研究が開始され、東北大・金 研・大洗センター・アクチノイド元素実験棟 において多数の Np 金属間化合物の単結晶が 育成された。NpTGas 系化合物では多段磁気 転移が観測され、また NpPd5Al₂では Np 化 合物初の超伝導が発見された。それら 5f 電子 が関わる新奇物性の起源解明のために Np サ イトを直接観測できるプローブとして ²³⁷Np メスバウアー分光の利用が望まれた。そこで 東北大・金研・大洗センターにメスバウアー 分光器を設置し研究が開始されたが、ドイツ マインツ大学より譲渡された ²⁴¹Am-Th 線源 の劣化が確認され、計画が一時頓挫していた。

²³⁷Np メスバウアー分光では γ線による 反跳効果と α線による後遺効果をいかに押 さえて核共鳴を起こさせるかが鍵である。つ まり(1)ドップラー変調のために機械振動 している²⁴¹Am線源を低温で安定保持するこ と、(2)²⁴¹Am核が乱れのない結晶マトリッ クスに分布していることが重要である。これ ら条件にかなう強放射性の²⁴¹Amを含む良質 の線源は購入が不可能なため、国内の原子力 研究施設で線源を製造する基盤技術から着 手する地道な研究が求められていた。

2. 研究の目的

本研究の第1の研究目的は、高分解能 ²³⁷Np メスバウアー分光の開発し、我が国の 超ウラン物性研究用に寄与することである。 その主なプロセスは良質の線源を開発製造 することにある。さらに第2の研究目的は、 マイナーアクチノイドである Np、Am の振 る舞いを評価するプローブとして²³⁷Np発光 メスバウアー分光技術を我が国にを適用し、 アクチノイド物性物理ならびに核燃料工学 に寄与することである。

研究の方法

図1の壊変図で明らかなように 237 Np メ スバウアー分光には 237 U線源と 241 Am の線 源を用いる方法が在る。 β 壊変を伴う 237 Uの 方が、マトリックス内にダメージをもたらす α壊変を伴う 241 Amよりも無反跳分率が高く、 短時間では大きな吸収が得られるが 237 Uは 高濃縮の 236 Uを中性子照射する必要があり、 しかも半減期もきわめて短いため、 241 Amを 線源とした 237 Np メスバウアー分光が一般的 である。しかし、アルファー壊変は 241 Am線 源そのものに後遺効果をもたらすため、どの ような線源マトリックス中に励起状態の

図1.²³⁷Np メスバウアーの壊変図

図2. Am-Pd2元系状態図

²³⁷Np が存在するのかによって、スペクトル の形状が大きく異なる。

以上の条件を満たす²⁴¹Am線源がこれまで いくつか提案されてきた。²⁴¹Am-Th 合金が 線幅の狭いシングルピークを示す良好な線 源であることが報告されているが、経年変化 などが未知数である。そこで、²⁴¹Am 金属線 源が比較的半値幅が狭く、長期間利用可能な 標準線源としてITUなどでは現在も利用され ている。しかし、Am 金属単体は化学的に活 性で大気中では急激に酸化するため、密封の 製造技術が問題となる、一方、酸化物線源は アルファー壊変により生成された複数の Np 価数状態がスペクトルに反映されてしまい、 単一のピークは得られない(5)。また、酸化し にくい²⁴¹Am-Cu 合金や²⁴¹AmPt₅金属化合物 も検討されているが、単相とならないために 線幅が広くなっている。

そこで、我々は、単相が得られる Am 合 金を検討た。Am の2元系状態図は、実験の 制約から数少ない組み合わせで知られてい るだけであるが、図2に示す Am-Pd 系が報告 されている。この状態図は AmO₂酸化物と Pd の粉末試料を還元雰囲気中でカップリング リダクション法により決定されている。ここ で注目すべき点は、Pd への Am の固溶限は 10%にも達していることであり、この範囲で は Pd の fcc 格子の中に Am を均一に分散させ ることが可能である。カップリングリダクシ ョン法は

 $AmO_2(s) + Pd(s) + H_2 \xrightarrow{900C} AmPd + H_2O$ で示されるように雰囲気ガス調整可能な電 気炉だけで作製可能なため、酸化物としての み入手可能な Am をグローブボックス内で作 業するには適しており本実験でも採用した。 まずは日本原子力研究開発機構・原子科学研 究所(東海)の Pu 研究棟で取り扱い可能な まずは 37MBq の微量な ²⁴¹Am で予備実験を した。カップリングリダクション法の予備実 験としては CeO₂、 Gd₂O₃、UO₂ と Pd の反応 性をX線回折により確認した。

次に原子力研究開発機構・大洗工学センタ ーの AGF 施設が所有するプルトニウム酸化

図3.²³⁷Np メスバウアー分光器

物 PuO₂が経年で²⁴¹Am を含むことに着目し、 同 じ カ ッ プ リ ン グ リ ダ ク シ ョ ン 法 で Pd-10%(Pu,Am)合金の製造を試みた。4mg の プルトニウ酸化物で 110MBq の²⁴¹Am が含ま れる。合金化前の(Pu,Am)O₂ と合金化後の Pd-5%(Pu,Pd) のメスバウアー線源としての 性能を評価した。

Np化合物の電子状態解析ツールとしての ²³⁷Np メスバウアー分光には、ギガオーダー の高強度線源が望ましい。そこで 3GBq まで の非密封²⁴¹Amをメスバウアー分光器内で使 用する許可申請を文部科学省に提出した。さらに非密封α核種である²⁴¹Amの体内被曝を 避けるために、分光器と冷凍機を改良し、図 3に示すような線源の着脱時にバッグイ・バ ッグアウトできるシステムを導入した。専用 のビニールバック、ならびに線源にドップラ ー速度を与える加振機(トランスデューサ) を上下動する架台システムを設置した。

4. 研究成果

合金化の評価

予備実験として、非放射性 CeO₂、Gd₂O₃
酸化物を Pd と 1200°C 固相反応させ、混合
比の評価を行った。X線回折の結果を図5(a),
(b)に示す。状態図は多数報告されていて、Ce
の Pd に対する固溶限は 11%であり、CePds
と CePd₃の金属間化合物が存在する。
25%Ce-Pdの混合比ではCePd₃が形成しても
矛盾がないが未反応の CeO₂の回折ピークだけが観測された。しかし、固溶範囲内の
5%Ce-Pd は、Pd のピークだけで、しかも格
子は広がっていることから、Ce が Pd に均一
に固溶した合金が形成していることがわか

図4カップリングリダクション法で合成した U-Pd 系および Am-Pd 系合金のX線回折

る。一方、Gd の場合は Pd に対する固溶限は 7%と低く、CePd₇ と CePd₃ の金属間化合物 が存在する。そのため、5%Gd-Pd では Gd は殆ど Pd に固溶したが、未反応の Gd₂O₃ が 検出された。固溶限を超えた 25%Gd-Pd では 相は不均一となりブラッグピークは不明瞭 となった。

次に U-Pd 系に対してカップリングリダ クション法の熱処理温度、熱処理時間の評価 を行った。UのPdへの固溶限は9%であり、 近傍には U_{0.11}Pd_{0.89}のラインコンパウンドが 存在することを考慮して、混合比は 5%U-Pd とした。まず、管理区域実験室(金研・大洗 センター・アクチノイド棟)のグローブボッ クス外でグラムオーダーの試料を作製して X 線回折を行った。800℃については1時間と 10時間の熱処理を行った。800℃、1時間 の熱処理では殆ど反応が進んでおらず、 800℃、10時間の熱処理でも3割程度が反 応しているに過ぎない。さらに 1000℃、10 時間の熱処理においても UO2 の半分強が合 金化しているだけで、未反応 UO2の合金化に は熱処理の温度を上げるか反応時間を増や す必要がある。

以上の結果を踏まえて、日本原子力研究 開発機構の Pu 研究棟内のグローブボックス 内で、mg オーダーの Pd-5%U および Pd-5%Am に対してカップリングリダクショ ン法を行った。ただし、グローブボックス内 では、炉は 900℃までが加熱可能であり、運 転時間は日中のみに制限されている。そのよ うな条件で固相反応させた Pd-5%U のX線 回折パターンを図4に示す。ただし、作業中 での試料の減量を恐れて混合直後のX線回 折測定を行っていないため合金化度は試算 できなかった。ボックス内で作成した試料の 強度比 I111(UO2)/I111(Pd)ならびに I111(AmO2)/I111(Pd)はいずれもボックス外の 結果に比べ大きな値となった。これは微量試 料の秤量を十分な精度で行えないために5% よりも多く酸化物を添加した可能性がある。 Pd-5%Amにおいては酸化物のピークがかな りブロードになっていることから、原料の AmO2自身がセルフラディエーションにより 変質していたと推測される。このような状況 でPd-5%Amの固相反応における熱処理温度 と反応時間は不十分なものであったが、作業 工程の制限から、専用のアルミ容器に密閉し て²⁴¹Am 合金線源とした。

分光器の評価

本研究では分光器の整備も進めた。(1) 冷凍機の機械振動の影響を軽減、(2)線源 駆動系全体を電動で上下動可変、(3) 非密 封線源の安全な着脱を実現するために、図 3に示す専用架台を設置した。付加するドッ プラー速度が大きい²³⁷Np メスバウアー分光 では⁵⁷Feメスバウアー分光ほどの高分解能は 必要としないが、装置分解能は線源の分解能 よりはるかに高いことが必須である。²³⁷Np メスバウアー分光装置の性能評価として、冷 凍機型クライオスタット内に線源(⁵⁷Co-Rh) と吸収体(α -Fe)の双方を装填して実験した。 図5にこの条件で測定した Fe 箔の ⁵⁷Fe メス バウアー吸収スペクトルを示す。クライオス タットの底に線源が達するように加振棒を 長尺に変更すると、線幅は 0.45mm/s から 0.73mm/s に広がった。しかし、²⁴¹Am 線源は 最も分解能の高い²⁴¹Am-Th合金でも2.5mm/s に達するため、この冷凍機型分光器内で²³⁷Np メスバウアー分光測定が十分可能である。

図5. α-Fe の ⁵⁷Fe メスバウアー分光 (冷凍機型分光器内で測定)

²³⁷Np 発<u>光メスバウアー分光測定</u>

数日の測定で高い S/N の発光スペクトル を得るには、GBq オーダーの高強度線源が望 ましい。予備実験として行った 37 MBg の ²⁴¹AmO₂に対して Pd との合金化を試みた。 ただし吸収体の ²³⁷Np の娘核種である ²³³Pa からの y線の方が 241Amよりも高強度になる ため、選択的な分光が必要とある。検出効率 の高い NaI シンチレータで測定すると両者 のスペクトルが重なってしまうので、ここで は半導体検出器を使った。波高分析器を用い て吸収体透過後の 59.54keV のγ線を選択的 に分光可能であった。この条件で測定した ²³⁷Np 発光メスバウアースペクトルは図6に 示すように S/N が悪くピークを判別しにく いが、アイソマーシフ-4.2mm/s と-26.7mm/s に半値幅 9.9mm/s と 6.4mm/s の発光ピーク が観測された。これらは、AmO2酸化物にお いてα壊変の後遺効果により生成した Np4+ と Np5+の励起準位に対応しているものと考 えられる。合金では自由電子のスクリーニン グによりアルファー壊変により導入された イオン状態は直ぐに緩和してしまうと考え られ、合金化が十分に進行していないと推察 される。一方、アイソマーシフト-20.6mm/s の位置には半値幅 0.5mm/s のシャープなピ ークが見られる。これが合金中の 241Am から の発光によるものか、単なるノイズなのか現 状では判断が難しい。

図6. (Pu,Am)O₂酸化物線源に対する ²³⁷Np 発光メスバウアー分光

AnO₂の多極子秩序の研究のため、本研究 の数年前にJAEA の徳永、逢坂らが (Pu,Am)O₂酸化物を東北大・金研のアクチノ イド元素実験棟に輸送したので、これを線源 とした²³⁷Np発光メスバウアー分光を行った。 約4mgの酸化物の中には²⁴¹Puがβ壊変して 生成した²⁴¹Amが110 MBq存在する。やは り線源からの γ 線は吸収体からより強度は 弱いが、NaIシンチレータで観測可能であっ た。この領域を選別して測定すると図7上段 に示す明瞭なダブレットのメスバウアース

図7. (Pu,Am)O₂酸化物線源に対する ²³⁷Np 発光メスバウアー分光

ペクトルが得られた。酸化物線源特有の2本 のピークが観測され、固相反応過程における 未反応の²⁴¹AmO₂からの発光メスバウアー スペクトル同様に、Np⁴⁺とNp⁵⁺の励起準位 に対応しているものと考えられる。しかし、 ピークの位置はそれぞれ-1.1mm/s と -23.8mm/sとなっており、混晶の(Pu,Am)O₂ と純粋なAmO₂ではピークの位置が僅かに ずれている。この違いは結合状態や欠陥状態 を反映しているものと考えられる。

この 110MBq の ²⁴¹Am を含む(Pu,Am)O₂ 酸化物を Pd粉末と混合して 1000℃で1 0時 間焼成を行った。この Pd-9.25%(Pu,Am)合金 線源に対して NpO₂吸収体に対する発光メス バウアー測定をすると、強度的に一週間の計 測で十分な S/N が得られた。図 7 下段が得ら れたスペクトルであるが、酸化物でダブレッ トだったピークはアイソマーシフト 21.35mm/s のシングレットラインとなり、半 値幅も最も良いとされている ²⁴¹Am-Th に近 いレベルの 5.5mm/s となった。

さらに高強度・高分解能のスペクトルを 得るには²⁴¹AmをGBq含むPd-Am2元系合 金を作る必要が在る。そこで日本原子力研究 開発機構のNUCEF施設において、920MBq の²⁴¹Amを含むPd-5%Am合金線源を製造同 様のカップリングリダクション法により製 造した。図8(a)に示す電気炉内蔵のX線回折 装置にAr-4%H₂の雰囲気中で900℃5時間 の熱処理を2回繰り返した。その結果図8(b) に示すペレット状の合金線源が得られた。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計6件)

 H. Chudo, Y. Tokunaga, S. Kambe, H. Sakai, <u>Y.</u> <u>Haga</u>, TD. Matsuda, Y. Ōnuki, H. Yasuoka, D. Aoki, <u>Y.</u> <u>Homma</u>, RE. Walstedt

 ^{237}Np nuclear relaxation rate in heavy fermion superconductor NpPd_5Al_2

PHYSICAL REVIEW B, 84(9), 094402, (2011). DOI: 10.1103/PhysRevB.84.094402

(2) Y. Tokunaga, T. Nishi, S. Kambe, <u>M. Nakada</u>, A. Itoh, <u>Y. Homma</u>, H. Sakai, and H. Chudo
NMR Evidence for the 8.5K Phase Transition in Americium Dioxide.
J. Phys. Soc. Jpn. 79 (2010), 053705-1-4 **DOI:** 10.1143/JPSJ.79.053705

(3) Y. Tokunaga, <u>M. Osaka</u>, S. Kambe, S. Miwa, H. Sakai, H. Chudo, <u>Y. Homma</u>, and Y. Shiokawa
¹⁷O NMR study in (Pu_{0.91}Am_{0.09})O₂.
J. Nuclear Mater. 396 (2010), 107-111. **DOI**: 10.1016/j.jnucmat.2009.10.062

(4) Y. Tokunaga, H. Sakai, H. Chudo, S. Kambe, H. Yasuoka, H.S. Suzuki, R.E. Walstedt, <u>Y. Homma</u>, D. Aoki, and Y. Shiokawa,

La substitution effect and hyperfine-enhanced $^{141}\mbox{Pr}$ nuclear spin dynamics in \mbox{PrPb}_3 : $^{139}\mbox{La NMR}$ study in $\mbox{Pr}_{0.97}\mbox{La}_{0.03}\mbox{Pb}_3.$

Phys. Rev. B 82 (2010), 104401-1-6. **DOI**: 10.1103/PhysRevB.82.10440

(5) Y. Ōnuki, R. Settai, F. Honda, N.D. Dung, T. Ishikura, T. Takeuchi, T.D. Matsuda, N. Tateiwa, A. Nakamura, E. Yamamoto, <u>Y. Haga</u>, D. Aoki, <u>Y.</u>

<u>Homma</u>, H. Harima, and H. Yamagami, Heavy fermion state and quantum criticality. Physica B-Condensed Matter 405 (2010) 2194-2199. **DOI**: doi.org/10.1016/j.physb.2010.02.00

(6) H. Chudo, H. Sakai, Y. Tokunaga, S. Kambe, D. Aoki, <u>Y. Homma</u>, <u>Y. Haga</u>, T.D. Matsuda, Y. Ōnuki, and H. Yasuoka
Anisotropic Spin Fluctuations in Heavy-Fermion
Superconductor NpPd₅Al₂.
J. Phys. Soc. Jpn. 79 (2010), 053704-1-4 **DOI:** 10.1143/JPSJ.79.053704

〔学会発表〕(計 6件)

(1)2013年3月20日

日本物理学会春の総会(広島大学) <u>本間佳哉</u>,仲村愛,広瀬雄介,辺土正人,仲間隆, 李徳新,本多史憲,大貫惇睦, 青木大 EuX₄(X=Al,Ga)のメスバウアー分光

(2)2012年9月20日

日本物理学会秋季大会(横浜国立大学) <u>本間佳哉</u>,仲村愛,広瀬雄介,大貫惇睦,青木大 EuGa₄のメスバウアー分光

(3)2012年3月24日
 日本物理学会春の総会(関西学院大学)
 本間佳哉,池田修悟,小林寿夫,那須三郎,<u>芳賀芳</u>
 範,四竈樹男
 EuFe₂As₂単結晶の¹⁵¹Euメスバウアー分光

(4)2011 年 9 月 28 日 ICAME 2011 (Kobe) <u>Y.Homma</u>, S.Ikeda, H.Kobayashi, S.Nasu, <u>Y.Haga</u>, and T.Shikama¹ ¹⁵¹Eu MÖSSBAUER SPECTROSCOPY OF EuFe₂As₂ SINGLE CRYSTAL (5)2011年9月21日
日本物理学会秋季大会(富山大学)
<u>本間佳哉</u>,青木大,<u>中田正美</u>,<u>芳賀芳範</u>,神戸振作,
目時直人,那須三郎,中村彰夫,大貫睦惇
メスバウアー分光による NpFeGa5の磁気構造解析

(6)2010年9月25日

日本物理学会秋季大会(大阪府立大学) <u>本間佳哉</u>,四竈樹男,関根ちひろ,<u>芳賀芳範</u>,那 須三郎 EuFe₄As₁₂スクッテルダイト化合物のメスバウアー 分光

6.研究組織
 (1)研究代表者 本間 佳哉

 (Homma Yoshiya)
 東北大学・金属材料研究所・助教
 研究者番号:00260448

 (2)研究分担者 芳賀 芳範 (Haga Yoshinori)
 独立法人日本原子力研究開発機構・先端 基礎研究センター・研究主幹 研究者番号:90354901

 (3)連携研究者 中田 正美 (Nakada Masami)
 独立法人日本原子力研究開発機構・原子 力基礎工学研究部門・研究副主幹 研究者番号:60370441

 (4)連携研究者 逢阪 正彦 (0saka Masahiko)
 独立法人日本原子力研究開発機構・大洗 工学センター・研究主幹 研究者番号:1042147