

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成25年 6月 3日現在

機関番号:24506
 研究種目:基盤研究(C)
 研究期間:2010年度~2012年度
 課題番号:22550182
 研究課題名(和文) 分相によるガラスの高機能化
 研究課題名(英文) Glasses with advanced functions by its phase separation
 研究代表者

 矢澤 哲夫 (YAZAWA TETSU0)
 兵庫県立大学・大学院工学研究科・教授
 研究者番号:50347522

研究成果の概要(和文):ボロシリケート系、ホスホボロシリケート系ガラス、フェニル系有機 無機ナノハイブリッドガラスについて、当該分相構造のダイナミックス及び当該分相構造中に 析出した YBO<sub>3</sub>、TiO<sub>2</sub>結晶の示す物性を、発光、光触媒能、導電性の観点より検討した。溶融法 によって作製されたガラスにおいて、アナターゼ型 TiO<sub>2</sub>結晶が単相で析出することを見出し、 当該結晶は、多孔化のための酸処理後も失われないことを明らかにした。

研究成果の概要(英文): The dynamics of phase separation and the properties on photo luminescence, photocatalytic ability and conductivity of YBO<sub>3</sub> and TiO<sub>2</sub> crystals deposited in its structure were investigated about boro silicate glass, phospho boro silicate glass and organic-inorganic nanohybrid glass system. It was clarified anatase type TiO<sub>2</sub> with single crystal phase was deposited from the glass prepared by melting process and this crystal was not lost by the acid leaching for its porocification.

## 交付決定額

(金額単位:円)

|        | 直接経費        | 間接経費        | 合 <b>計</b>  |
|--------|-------------|-------------|-------------|
| 2010年度 | 2, 600, 000 | 780, 000    | 3, 380, 000 |
| 2011年度 | 700, 000    | 210, 000    | 910, 000    |
| 2012年度 | 700, 000    | 210, 000    | 910, 000    |
| 年度     |             |             |             |
| 年度     |             |             |             |
| 総計     | 4, 000, 000 | 1, 200, 000 | 5, 200, 000 |

研究分野:化学 科研費の分科・細目:材料化学・無機工業材料 キーワード:ガラス、分相

## 1. 研究開始当初の背景

ガラスの分相に関する研究は、アルカリシ リケート系やホウケイ酸系を中心に展開さ れてきたが、近年はむしろガラスに普遍的な 現象であるとの認識が広がっている。ガラス の結晶化については、1957年の米国の Stookey らによる、ガラス中に結晶を析出さ せる結晶化ガラスの手法の発表以来、様々な 機能性結晶化ガラスが開発されている。しか しながら分相現象は結晶化過程よりも解析 が困難なために未だ未解明の点が多く、ガラ ス中でのナノ構造形成の手段として重要で あるにも関わらず、機能性ガラスを得る手法 としては汎用されていない。研究代表者らは これまでホウケイ酸ガラスを中心に、その分 相過程や多孔化などの研究を行ってきた。ホ ウケイ酸ガラスは加熱によりイオン結合が 支配的な高極性の Na<sub>2</sub>0-B<sub>2</sub>0<sub>3</sub>相と化学的耐久 性に優れる Si0<sub>2</sub>相の 2 相に相分離する。こ の高極性領域には様々なイオンが溶け込む

ため、分相領域のサイズに制限された機能性 ナノ結晶が高密度に析出する。この特徴を生 かし、研究代表者らは、赤色蛍光を発する、 YBO<sub>3</sub>:Eu<sup>3+</sup>ナノ結晶が Na<sub>2</sub>O-B<sub>2</sub>O<sub>3</sub>相中に析出す ることを報告している(Glass Tech:Eur. I. Glass Sci. Technol. A, 50, 233 (2009)) 当該ガラスは、結晶化時間に伴い発光強度が 増大するが、未分相ガラスでの均一な体積結 晶化とは異なり、分相構造内に析出した結晶 の蛍光特性は、結晶の歪みと関係しており、 空間的に制限された分相構造中では結晶に 特異な応力が負荷されることを示唆する結 果が得られている。このように、分相構造中 に析出した結晶は、歪みや分相構造の制限に よる結晶のアスペクト比、ナノ結晶の高密度 化、それに基づく結晶どうしの連通性等によ る多彩な機能を発現する可能性がある。こう した多彩な機能を有する、結晶化ガラスを得 るためにもガラスの分相について、ガラスを 構成する原子、イオンの配列からの観点、即 ちガラス構造論的観点から、さらに踏み込ん だ研究を行っていく必要があるものと考え られる。

## 2. 研究の目的

ガラスの分相は古くから知られている現 象であるが、ガラスの機能化設計の手法とし てはあまり用いられていない。ガラスは非晶 質のために詳細な解析が困難であり、分相メ カニズムや分相ダイナミクスの詳細につい ても未だ不明な点が多い。分相は制御された 条件下で自己組織化的に進行し、新たなナノ 構造の構築手法として期待できる。そこで本 研究では、分相ダイナミクスを明らかにする とともに、図1に示すように分相構造中に機



#### 図1 分相構造中の機能性結晶の析出

能性ナノ結晶を析出させる機能発現の場と して積極的に利用すること、及び当該分相構 造を酸リーチングすることにより生成した 非常に高い反応性を有するシラノール基を 用いることによるガラスの更なる高機能化 を実現することを目的としている。

3. 研究の方法

(1) ガラスの作製

Si, B, Na, Ca, P 等の原料として、シリカ、

ホウ酸、炭酸ナトリウム、炭酸カルシウム、 五酸化リン等を用いて、アルミナあるいは白 金るつぼ中で、1400~1600℃で溶融した。ま た、有機無機ナノハイブリッドガラスはシリ コンテトラエトキシド等を用いるゾルゲル 法によって作製した。

## (2)分相構造および分相ダイナミクス ①高磁場NMRによる解析

ガラス融液の冷却速度や分相処理温度、時間またガラス組成などによって分相構造の 大きさや連通性は大きく変化する。またガラ ス融液からの冷却および分相過程で、3配位 と4配位ホウ素の割合は変化すると考えられ る。構造解析には一般にNMR分光法が有力で あるが、ホウ素(<sup>11</sup>B)核は四極子相互作用のた めにスペクトル幅が広がり、汎用NMR(300~ 500 MHz)では形状や配位数の詳細を明らかに することは困難である。本研究は、高磁場 (930 MHz)を利用したNMR分光スペクトルよ り、ホウ素配位数、結合形状とそれらの空間 的な繋がりに関する解析を行った。

## ②軟X線放射光による解析

ホウ素や炭素などの軽元素の分析に高い 感度を有する軟X線放射光によってホウ素の 配位状態及び電子状態の解析を行った。

#### ③薄膜の分相

ゾルゲル法によりフェニル基を含むシリ カゾルを作製し、ディップコーティング法に よりフェニル基を含む基板上でゲル化(ガラ ス化)することにより、当該基板がガラス薄 膜の分相に及ぼす効果について、全反射赤外 分光分析(ATR-FTIR)法によってフェニル基 の分布を測定することにより解析した。

(3)分相構造の特徴を生かしたガラスの高 機能化

①発光特性

分相構造中に析出した YBO<sub>3</sub>:Eu<sup>3+</sup>の発光を 検討することにより、当該構造中に析出する 結晶の歪みの解析を行った。即ち、結晶の対 称性が良好な 580-600 nm の発光に起因する ピーク面積値(0)と、結晶の対称性が悪い 600-640 nm の発光に起因するピーク面積値 (R)の比 R/0 値を結晶の歪みの指標とした。

## ②チタニアを析出したガラスの光触媒特性

研究代表者らは既に、分相性ホウケイ酸ガ ラスに酸化チタンを加えることで、当該分相 構造中にルチル型酸化チタンの微結晶が高 分散した多孔質光触媒ガラスについて報告 している(*Ceramics International*, 35, 1693 (2009))。このガラスは迅速な有機物等の吸 着と、吸着物質の光分解機能を併せ持ってい るが、アナターゼ型よりも光触媒活性が劣る ルチル型 TiO<sub>2</sub>が析出し、不透明であるなど、 種々な欠点があった。そこで本研究では更な る光触媒能の高活性を図るために、透明で、 かつアナターゼ型 TiO<sub>2</sub>のみを析出させた多 孔質光触媒ガラスの創製を、ガラス溶融法に て試みた。またこのガラス組成に酸化ニオブ を加えることで、多孔質透明伝導性結晶化ガ ラスの創製も併せて試みた。当該ガラスは太 陽電池への広汎な応用が期待されるもので ある。光触媒能の評価は、6.4 ppm のメチレ ンブルー(MB) 水溶液 50 ml を入れた直径約 9cm のシャーレに 24h 含浸させ、紫外光(強度 0.04mW/cm<sup>2</sup>)を照射し、所定時間ごとの MB 溶 液の濃度を測定した。

#### ③細孔表面特性

分相処理により得られる Na<sub>2</sub>0-B<sub>2</sub>0<sub>3</sub> 相は酸 に可溶であり、この分相ガラスを酸処理して 多孔化することで、得られる多孔質ガラスの 骨格はSi0<sub>2</sub>よりなるために、十分な機械的強 度を有するとともに細孔表面のシラノール 基(SiOH 基)は極めて反応性に富んだもので ある。当該シラノール基と各種シラン化合物 とは容易に反応して機能性に富んだ細孔表 面を創出する。反応は、乾燥したトルエン中 にヘキサメチルジシラザンを含有させ、24h 程度環流することによって行った。エタノー ル、アセトン/水の分離にはパーベーパレーシ ョン法を用い、エタノール、アセトンの定量 にはガスクロマトグラフを用いた。

4. 研究成果

(1)分相構造および分相ダイナミクス ①高磁場 NMR による解析

ホウ素の空間的な繋がり方を<sup>11</sup>Bの2D相 関NMR分光スペクトルより明らかにした。この 際、21.8Tの強磁場のNMR測定装置を用いて精 密に解析を行った。この結果、分相において 酸に対する可溶相であるアルカリボレート相 中のBはリング状にて存在していること、酸 に対する不溶相であるシリカリッチ相中のB は、孤立した状態でSiと結合していることを 明らかにした。

## ②軟X線放射光による解析

熱履歴(ガラス融液の冷却速度、分相処理温度)や組成の異なるボロシリケートガラスを 系統的に作製して、ホウ素の配位数について 軟X線スペクトルと第一原理計算であるDV-X  $\alpha$ を用いて解析を行った。その結果、軟X線 スペクトルにおける199 e V付近のピークは 4配位ホウ素、203 e V付近のピークは3配位 ホウ素であることが明かとなった(図2)。こ れに基づき、 $xNa_2O-(1-x)B_2O_3(x=0-03)$ ガラス において、 $Na_2O$ が増加すると4配位ホウ素の



## 図2 軟X線放射光によるBの分析

割合は増加し、分相後の当該ガラスにおける 4配位ホウ素も増加することを示した。

③薄膜の分相

ATR-FTIRスペクトルから得られるシロキサ ン骨格とフェニル基に由来するIRの吸収ピー ク強度を用いて、フェニル基成分の割合を定 義した。ポリエチレンテレフタレート、ポリ カーボネート上に作製したコート膜は、コー ト表面におけるフェニル基の割合が低下した 。これは、ポリエチレンテレフタレート、ポ リカーボネート及びコート膜中のフェニルト リエトキシシラン (PhTES) 中に存在するフェ ニル基同士の間でπ電子相互作用が発現し、 その結果、コート膜中のPhTES成分の基板側へ の移動が生じたと考えられ、コート膜のよう な薄膜において、コート基板の影響により分 相構造が発現したと考えられる結果が得られ た。当該コート膜の密着強さとπ電子相互作 用のエネルギーからπスタッキングは数百層 程度と見積もられた。

(2)分相構造の特徴を生かしたガラスの高 機能化

①発光特性

分相構造中にYBO<sub>3</sub>:Eu<sup>3+</sup>赤色発光ナノ結晶を 析出させる際に、ガラス転移温度よりやや高 い温度にて延伸することで、分相構造中に析 出した結晶を延伸方向に配列させることを試 みた。発光スペクトルより得られるR/O値より 、歪みの程度を解析したが延伸による顕著な 歪みの効果は観測できなかった。

また、当該ナノ結晶のY<sup>3+</sup>の位置にイオンサ イズの違うLa<sup>3+</sup>やGd<sup>3+</sup>を置換することによっ て当該結晶に歪みを与え、発光強度、発光特 性の変化を検討したが、R/O値には大きな変化 が見られず(図3)、イオン置換による構造の 歪みは観測されなかった。



図3 La, Gdイオンの置換効果

②チタニアを析出したガラスの光触媒特性 Ti02-Si02-K20-B203を組成とするガラスに少 量のNb205を加えてガラス原料とし、アルミナ 坩堝を用いて、1600℃、1hで溶解後、ツイン ローラーを用いた超急冷を行って作製した。 得られたガラスを700℃、15hで処理して分相 、結晶化を行った。その後、3N-HNO3で可溶ガ ラス相を溶出させた。図4に各処理後のXRD



図4 アナターゼ型TiO2結晶の析出

の結果を示す。急冷後のガラスでは結晶相は 確認できなかったが、熱処理後はアナターゼ 型TiO<sub>2</sub>の結晶相が単相で析出することが観察 された。さらに細孔形成のための酸処理後に も、当該ピークは残存しており、窒素吸着測 定により比表面積が100m<sup>2</sup>/g以上を有してい ることから多孔質ガラス細孔中にアナターゼ 型TiO2の微結晶が形成されていると考えられ る。当該結晶化ガラスのTEM写真を図5に示す が、結晶粒径が10 nm程度の酸化チタンの微結 晶が析出していることがわかる。さらに、図 6に当該ガラスの写真を示すが、ツインロー ラーを用いた超急冷によって、透明なガラス を作製するができた。しかしながら、当該ガ ラスの光触媒能は、従来のルチル型TiO。とほ ぼ同様であり、Nb<sub>2</sub>05の添加による導電性の向 上もみられなかったが、上述したように、透 明で、多孔状のものが得られており、今後の 更なる展開に期待が持てると考えられる。



図5 結晶化ガラスのTEM写真 の一例



# 図6 超急冷によって得られた ガラスの一例

③細孔表面特性

ヘキサメチルジシラザンで表面改質した 多孔質ガラス膜を用いて、エタノール、アセ トン/水混合系からのエタノール、アセトンを 分離する場合。アセトンの方が混合系の濃度依 存性が強いことがわかった。供給液の濃度が 10wt%の場合、エタノール、アセトンの分離係 数は各々、5、25、透過速度は各々、3、4kgm<sup>-2</sup>h<sup>-1</sup> であった。

5. 主な発表論文等
〔雑誌論文〕(計3件)
①T. Jin, Y. Ma, W. Masuda, Y. Masuda,
M. Nakajima, K. Ninomiya, T. Hiraoka,
<u>Y. Daiko</u> and <u>T. Yazawa</u>, "Ethanol separation from ethanol aqueous solution by pervaparation using hydrophobic mesoporous silica membrane", *J. Ceram. Soc. Jpn.*, 119, 549-556(2011).
②T. Jin, Y. Ma, W. Masuda, N. Nakajima,
K. Ninomiya, T. Hiraoka, J. Fukunaga,
<u>Y. Daiko</u>, <u>T. Yazawa</u>, "Preparation of surface-modified mesoporous silica membranes and separation mechanism of

their pervaporation properties" Desalination, 280, 139-145 (2011). ③Y. Mizuta, Y. Daiko, A. Mineshige, T. <u>Yazawa</u>, "  $RSi(OC_2H_5)_3$  -Si( $OC_2H_5$ )<sub>4</sub> coatings prepared by sol-gel process", Ceramics International, **39**, 925-930 (2013).

〔学会発表〕(計6件)

①住田慎治、大幸裕介、嶺重温、小舟正文、 矢澤哲夫、ホウケイ酸ガラスからのアナター ゼ TiO<sub>2</sub>の結晶化、第 51 回ガラスおよびフォ トニクス材料討論会(2010). ②S.Masamune, Y.Daiko, M.Kobune, A. Mineshige, T. Yazawa, Luminescence Properties of YBO<sub>3</sub>:Eu<sup>3+</sup> Doped Borosilicate Glasses Crystallized Under Shear Stress, 3<sup>rd</sup> International Congress on Ceramics (2010).③Y. Daiko, K. Imagawa, A, Mineshige, M, Kobune, Y, Muramatsu, T, Yazawa, Soft X-ray Absorption of the phase-separation and boron coordination number for sodium borosilicate glasses, 4th international conference on the Science and Technology for advanced ceramics (STAC-4) (2010). ④正宗覚、<u>大幸裕介</u>、嶺重温、<u>矢澤哲夫</u>、ホ ウケイ酸ガラスの分相構造を利用した YBO 3: Eu<sup>3+</sup>結晶析出における酸化物添加効果、 第52回ガラス及びフォトニクス討論会 (2011).⑤臼井寛明、大幸裕介、嶺重 温、矢澤哲夫、 アナターゼ型 Tio, 析出結晶化ガラスの結晶 化挙動と特性評価、日本セラミックス協会第 25回秋季シンポジウム(2012). ⑥矢澤哲夫,水田豊,平口大貴,大幸裕介, 嶺重温、ハードコートに関する2,3の知見、 第53回ガラスおよびフォトニクス材料討 論会(2012). 〔図書〕(計1件) <u>T.Yazawa</u>, Nonoporous Materials, 10.

Nanopore Glass, CRS Press, New York, 2013.

6. 研究組織

(1)研究代表者 矢澤 哲夫 (YAZAWA TETSUO) 兵庫県立大学・大学院工学研究科・教授 研究者番号:50347522

(2)研究分担者 大幸 裕介 (DAIKO YUSUKE) 兵庫県立大学・大学院工学研究科・助教 研究者番号:70514404

(3)連携研究者

村松 康司 (MURAMATSU YASUJI)

兵庫県立大学・大学院工学研究科・教授 研究者番号:50343918