

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成25年 6月10日現在

機関番号:32682
研究種目:基盤研究(C)
研究期間:2010~2012
課題番号:22560091
研究課題名(和文) 鉄系およびNi-Ti系合金における擬弾性効果発現条件の探求とその メカニズムの解明
研究課題名(英文) Study on the mechanism for pseudo-elasticity effect in Ni-Ti alloy and Fe-based alloys
研究代表者
納冨 充雄(NOTOMI MITSUO)
明治大学・理工学部・教授
研究者番号:70218288

研究成果の概要(和文):

本研究では形状記憶合金の知見から擬弾性効果を発現する合金と機構について検討する.2 元系 B2 型合金と不規則 A2 型合金の対称性について考える.結晶構造の一つの原子とそれに 隣接する原子の極性を考慮した対称性から,結晶構造の取りうる極配置を分類し,隣接原子の 極配置との関係について調べた.結果を2 元系形状記憶合金の相変態後の結晶系と比較した. 変形におけるひずみエネルギと変態時における熱量の関係を調べ,エネルギ収支の観点から変 態と変形におけるエネルギは同等に取り扱うことができることを示した.最後に,3 種類の鉄 系の合金において弾塑性変形試験を行い,擬弾性効果について検討した.

研究成果の概要(英文):

The mechanism of the pseudo-elasticity is studied according to the revealed mechanism of shape memory alloy and then the alloy having the behavior is considered. First, this study presents a simple interatomic bonding model for disordered A2 and B2 crystal structures. Only 13 motifs were found as unique by point symmetrical operations and classified in terms of the point groups. Four bonding patterns were found for configuring the space of models with unique motifs according to symmetrical operations between the motifs of the center and neighbor atoms. Each shape memory binary alloy can then be connected to the motifs on the atomic model via the crystal syngony and point symmetry. Second, the amount of the strain energy of Ni-Ti alloy during deformation is compared with that of heat flow with DSC during heating and the equality at the balances of both is found. Third, Three kinds of Fe-based alloys are conducted on elastic and plastic deformation tests and considered the pseudo-elasticity.

			(金額単位:円)
	直接経費	間接経費	合 計
2010 年度	1, 900, 000	570, 000	2, 470, 000
2011 年度	600, 000	180, 000	780, 000
2012 年度	900, 000	270, 000	1, 170, 000
年度			
年度			
総計	3, 400, 000	1, 020, 000	4, 420, 000

交付決定額

科研費の分科・細目:機械材料・材料力学 キーワード:材料設計・プロセス・物性・評価

1. 研究開始当初の背景

形状記憶合金は擬弾性合金であり、変形の モードは異なるがマルテンサイト変態は必要 条件と考えられている.しかし,最新の研究 ではこの既成概念を超えた材料が安田らによ って発見されている.彼らはマルテンサイト 変態を生じない Fe₃Al 合金において擬弾性効 果を確認し、このメカニズムをすべりが反位 相境界(APB)によるバックストレスで戻るこ とが原因であるとしている. さらに, Fe3Ga においては、擬弾性のメカニズムとして、転 位運動、応力誘起マルテンサイト変態、双晶 変形の3種のモードが活動していることを示 している. そこで, 変形と変態における結晶 構造の変化に着目した機構の解明とその知見 から新しい擬弾性合金の開発が望まれている. 2. 研究の目的

本研究では形状記憶合金の知見から擬弾性 効果を発現する合金と機構について検討する. まず,形状記憶合金の主流である 2 元系 B2 型合金の対称性について検討する.結晶構造 の一つの原子とそれに隣接する原子の極性を 考慮した対称性から,結晶構造の取りうる極 配置を分類する.さらに,ある極配置とその 隣接原子の極配置との関係について調べ,極 配置から得られる結晶系と2元系形状記憶合 金の相変態後の結晶系を比較し,母相の全て の極配置とマルテンサイト変態の有無および 変態後の結晶構造を推定できる可能性につい て検討する.

次に,擬弾性効果におけるエントロピ弾性 の役割について検討する.変形におけるひず みエネルギと変態時における熱量の関係を詳 細に調べ,エネルギ収支の観点から変態と変 形におけるエネルギは同等に取り扱うことが できることを示す. 最後に,3 種類の鉄系の合金において弾塑 性変形試験を行い,擬弾性効果について検討 する.典型的な降伏挙動を示す鉄鋼材料をタ ーゲットとして,3 種類の変形モードおよび 熱処理条件と擬弾性効果発現の条件の関連を 明らかにする.

3.研究の方法

(1) 点群を使って B2 構造について,ある原子 の最隣接原子との結合に極性を持たせたとし たら対称性がどのように変化するか,点対称 性のみを考慮してユニークな極配置を調べた. 次にその極配置で空間を埋めた場合に隣接す る原子の極配置を結合の規則より決定する. さらに実際の形状記憶合金におけるマルテン サイト変態時の結晶構造の変化と比較し,潜 在的な極性を検討した.

(2) NiTi 合金の熱力学的検討

Ni 濃度 49.85at.%(54.93wt.%), 直径 1mm の Ni-Ti 合金を供試材として用いた. 熱処理条 件は, 480℃で1時間保持した後, 水冷した. 引張試験で与えるひずみは1, 2, 3, 4, 5% とし, 引張速度はひずみの大きさが1, 2%で は1mm/min, 3~5%では3mm/minとした. 示差走査熱量測定(DSC)の測定範囲は-70~ 150℃, 昇温速度は3℃/min, 冷却速度は5℃ /minとした.

(3) 鉄系合金の擬弾性特性

供試材の化学成分,少量添加元素が及ぼす影響について述べる.供試材は全てJFE テクノ リサーチ株式会社に製造を依頼した.合金は 真空溶解炉によって 10[kg]程度のインゴッ トに鋳造され,数枚の鋼板に切断する.その 後,探傷法エコー検査により鬆が少ない部分 から \$ 12[mm],長さ 500[mm]程度の棒材を 切り出したものを供試材とする.表1に各合 金の組成を,表2に熱処理条件を示す.金属 系超塑性材料の圧縮特性評価方法(H7052)を 参考にして,圧縮試験を行い応力ひずみ関係 (SS)を得た.

Table 1 Chemical composition

Mass%	С	Si	Р	Ni
Fe-P alloy	0.192	0.07	2.76	-
Fe-Si alloy	0.169	13.4	< 0.003	-
Fe-Ni alloy	0.0015	< 0.01	< 0.003	30.63
	Al	Ν	0	S
Fe-P alloy	0.019	0.0018	0.0026	0.001
Fe-Si alloy	0.024	0.0014	0.0011	0.0003
Fe-Ni allov	_	-	-	0.0005

Table 2 Heat treatment conditions

Heat treatment	Temperature(°C)	Keep time(min)	Cooling rate
Fe-P Rapid cool	1070	240	About 1000(°C/sec)
Fe-P Late cool	1070	240	30(°C/h)
Fe-Si Rapid cool	1100	240	About 1000(°C/sec)
Fe-Si Late cool	1100	240	30(°C/h)
Fe-Ni Rapid cool	1000	60	About 1000(°C/sec)
Fe-Ni Late cool	1000	60	60(°C/h)

4. 研究成果

(1) 点群が異なるユニークな極配置は 13 種 類に分類された. さらに,隣接原子の極配置 の関係は,AA,AA',AB,AB'パターンの4 種類に分類できることが分かった.その分類 を元に2元系形状記憶合金の母相での潜在的 な構造をマルテンサイト相の結晶構造から推 察した.その結果,母相が disordered な BCC(A2)構造を有する5種類はAA あるいは AA'パターンに,B2 構造を有する9 種類は AB あるいはAB'パターンに分類された.(〔雑 誌論文〕1)

(2) 引張試験時に得られた応力-ひずみ線図 は設定したひずみ(変位量)に達して除荷する と、弾性変形によりひずみが戻ることを示し た. DSC に用いた試料には応力が0になった ときのひずみエネルギが加わっているため、 ひずみが最大になったときのひずみエネルギ から弾性変形で戻った分のひずみエネルギの 差、すなわち残留ひずみエネルギ Uを求める. Uは以下の式により求めることができる.

$$U' = \frac{1}{2}\sigma_{\max}\varepsilon' \tag{1}$$

式(1)において, *o*max は設定したひずみに達し たときの最大応力, *e* は残留ひずみである. (1) 式により求められる残留ひずみエネルギの単 位は MJ/m³ であるため, これを Ni-Ti 合金の 密度 6500kg/m³を用いて J/g に単位換算する. *A*_f, *R*_s, *M*_s点と残留ひずみの関係を Fig.1 に 示す.

Fig. 1 Transformation temperature and residual strain

残留ひずみが大きくなると A_f点と M_s点は高 くなるが, R_s点は一定であることがわかる. 残留ひずみの増加に伴う逆変態ピークの高温 側への推移は,与られたひずみが大きくなる ほど,その形状回復により高い温度が必要に なっていることが考えられる.すなわち,平 衡温度からの過加熱をより大きくすることで より大きな駆動力を得ることができ,それに よって与えられたひずみを打ち消していると 考えられる.

DSC より求められた逆変態で吸収した熱 量と残留ひずみの関係を考えるため, U'と QM-Aの和である UTotalと残留ひずみの関係を Fig.2 に示す. この図より, UTotalの値はひず みが無い場合を除いて約 10J/g の一定値とな った. この結果から,変形と熱吸収における

Fig. 2 Total transformation energy and residual strain

エネルギの和は変形量に依存しないことが示 された.0%において *U*_{Total}が大きくなった理 由については今後の検討課題である. (3) Fe 系合金の擬弾性効果について

Fe-P 合金の SS 曲線を Fig.3 に示す. 破断 は材料内へのき裂が粒界を縫うようにして伝 播していることに加え,破壊経路が粒界に沿 っている. すべり帯観察では、素地にすべり が起こった痕跡があり,素地が動いてできた と考えられる析出物の周りの空間が確認でき るなど,素地は塑性を持っている.すなわち, 素地領域では炭素鋼等と比べ、高い応力が加 えられても、その塑性変形量は明らかに少な いことから、固溶強化によるα-Fe 組織の強 靭化はなされているものと考えられる. しか し, その強靭化したα-Fe よりも, 粒界にあ るステダイト組織が先に破壊に至ってしまう ため、粒界破壊が発生する。その結果、硬度 に比べ低い応力で粒界破壊を引き起こし、擬 弾性は表れない.

Fe-Si 合金の SS 曲線を Fig.4 に示す.供試 材の中で最も脆性が高く,塑性の挙動がほと んど現れなかった.単結晶と思われるα1組 織の硬さと析出した黒鉛が欠陥としての役割 を持ち破壊の原因となるため,へき開を伴う 脆性破壊を引き起こしてしまい,擬弾性は示 さなかった.

Fe-Ni 合金の SS 曲線を Fig.5 に示す. サブ ゼロ処理を施した試験片の SS 曲線を見ると オーステナイト組織とマルテンサイト組織に 関係する部分に分けられる. Fig.6 に電子顕 微鏡による組織観察写真を示す. サブゼロ処 理によりレンズマルテンサイト組織が生成し, 降伏応力・ひずみが上昇した. 本試験片でも 擬弾性効果は確認されなかったが, マルテン サイト組織にはミッドリブが観察され, 内部 双晶を調整すれば擬弾性効果を発現すると考 えられた.

5. 主な発表論文等

〔雑誌論文〕(計1件)

 Interatomic bonding model with polar motifs based on point group theory for B2 and A2 crystal structures of shape memory binary alloys, <u>Mitsuo NOTOMI</u>, <u>Hironao GOMAE</u>, Journal of Solid Mechanics and Materials Engineering, 7, 1, 1-10, 2013, 査読有

〔学会発表〕(計9件)

1. Crystallographic Research of Martensite Transformation in Low Carbon Steel, Harunobu KUGE, Mitsuo NOTOMI, Proceedings of the 7th International Symposium on Mechanics, Aerospace and Informatics Engineering 2013, ISBN 978-89-94266-17-8, 2013.2.21

2. Development of new shape memory with

mechanical alloying, <u>Shunsuke</u> <u>WATANABE</u>, <u>Mitsuo NOTOMI</u> and <u>Kousuke</u> <u>SUZUKI</u>, Proceedings of the 7th International Symposium on Mechanics, Aerospace and Informatics Engineering 2013, ISBN 978-89-94266-17-8, 2013. 2. 21

- 熱処理温度がNi-Ti合金マルテンサイト 変態の形状記憶効果および超弾性効果 に及ぼす影響,<u>田邉</u>大矢,鈴木 公 <u>輔,東海</u>大輝,納富 <u>充雄</u>,日本ば ね学会 2012 年度春季ばね及び復元力応 用講演会講演論文集, 2012.6.7
- Crystal structure consideration of Ni-Ti and Fe-Ni with Monte Carlo Simulation, <u>Satoru OKABE</u>, <u>Mitsuo</u> <u>NOTOMI</u>, Proceedings of the Sixth International Symposium on Mechanics, Aerospace and Informatics Engineering 2012, ISBN 978-89-94266-16-9, 273-275, 2012. 2. 27
- 5. Study of the heat quantity of transformation with Ti-Ni shape memory alloys, <u>Kosuke Suzuki, Hiroya</u> <u>Tanabe, Daiki Toukai, Mitsuo</u> <u>Notomi</u>, Proceedings of the Sixth International Symposium on Mechanics, Aerospace and Informatics Engineering 2012, ISBN 978-89-94266-16-9, 280-283, 2012. 2. 27
- 6. Crystallographic investigation of martensite transformation in Fe-C alloy, Daisuke KASAMATSU, <u>Shinichi</u> <u>TAKAGI, Mitsuo NOTOMI</u>, Proceedings of the Sixth International Symposium on Mechanics, Aerospace and Informatics Engineering 2012, ISBN 978-89-94266-16-9, 300-303, 2012. 2. 27
- Fe-Ni 合金の形状記憶効果,<u>鈴木 政志,</u> <u>沖田 潤,納富 充雄</u>,日本ばね学会 2011 年度秋季ばね及び復元力応用講演 会講演論文集, 2011.11.24
- Ni-Ti 形状記憶合金のマルテンサイト変 態時の熱量測定,<u>東海 大輝,鈴木</u> 公輔,納富 充雄,日本ばね学会 2011 年度秋季ばね及び復元力応用講演会講 演論文集, 2011.11.24
- Ti-Ni 合金のマルテンサイト変態における晶癖面でのポテンシャルエネルギ 計算,<u>倉本真一,納冨充雄</u>,日本機械 学会関東支部第17期総会講演会,110-1, 9-10,2011.3.18

Fig.6 Martensite phase of the Fe-Ni alloy with SEM

6. 研究組織

(1)研究代表者
納富 充雄(NOTOMI MITSUO)
明治大学・理工学部・教授
研究者番号:70218288