The purpose of the research is to develop the energy management system for next generation power system with various renewable energy resources. The results of the research are (1) the development of distributed power information 1D chips and the standardization of the functions, (2) the development of advanced voltage monitoring and control system of power system against uncertain power flow change and the confirmation of the proposed control method by using real-time simulation, (3) risk-quality management for investment and construction of power apparatus.

<table>
<thead>
<tr>
<th></th>
<th>直接経費</th>
<th>間接経費</th>
<th>合 計</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010年度</td>
<td>1,700,000</td>
<td>510,000</td>
<td>2,210,000</td>
</tr>
<tr>
<td>2011年度</td>
<td>800,000</td>
<td>240,000</td>
<td>1,040,000</td>
</tr>
<tr>
<td>2012年度</td>
<td>500,000</td>
<td>150,000</td>
<td>650,000</td>
</tr>
<tr>
<td>総 計</td>
<td>3,000,000</td>
<td>900,000</td>
<td>3,900,000</td>
</tr>
</tbody>
</table>

研究分野：工学

科研費の分科・細目：電気電子工学／電力工学・電力変換・電気機器
キーワード：電気エネルギーシステム、エネルギーマネジメント、自律分散型システム、電力品質、モニタリングシステム、リスクアセスメント
1. 研究開始の背景
エネルギー問題と環境負荷低減問題の同時解決による持続可能な成長基盤の確立に向けて、社会システムのパラダイムシフトは急務であり、テクノロジー変革による根本的な解決策が求められている。その中でも、産業・生活を支える最重要社会インフラである電気エネルギーシステムは大きく変革の時期に直面しており、太陽光・風力発電など多種多様な自然エネルギーの積極的な導入とプラグインハイブリッド・電気自動車へのシフトと、それらをネットワークで繋ぐ新しい電力システムの実現は喫緊の課題である。

なお、自然エネルギーシステムが分散的に導入されることで、電気エネルギー需給システムは、集中から分散へ、一極から多極へ、単方向から双方向へと質的にも構造的にも大きく変化することが示唆される。こうした質的に量的な変化は、具体的には、自然エネルギーの出力変動、電力取引による需要変動などによるシステム変動における不確定要素の増加に繋がり、その結果、電力供給の増加、潮流の偏在化や地震、電圧低下、周波数変動などの新たな問題が新たに派生することが懸念される。都市技術のオフライン電力の需要を満たすことが必要となっている。

こうした電力システムを取り巻く状況の変化に対応するためには、①電力供給業者側の電力品質に関する情報の共有するための電力情報システムの整備、②現状の電力設備を有効に活用しながら、新設設備の導入効果を最適化する協調的運用・制御システム、③電力情報に基づく設備形成のリスクと電力品質のアセスメントに基づいて需要家インセンティブを付与する制度設計が必要である。①の電力情報システムに関しては、エネルギー・資源効率化の公共研究(A1)「自律分散型電気エネルギー流通シミュレーションシステム」（代表者：三好健，H12～H22）の研究者全員が参加した、GPSによる同期計測機能を有する小型分散型電力モニタリングシステムについて研究展開し、基本システムの試作と機能の標準化に関して成果を納め、その活用方法として電力システムのモニタリング技術について検討してきた。また、②の運用・制御システムについては、電力品質の管理に関して、電力供給業者側の電力供給品質を向上させるための手法について成果を収め、それに基づいた新しい制度設計モデルを構築した。

2. 研究の目的
本研究では、新たなエネルギー需給のパラダイムシフトに対応できる電気エネルギー管理システムを構築する。具体的には、下記の内容について明らかにする。

（1）分散型電力情報IDチップの開発と機能
電力情報IDチップは電力情報の集中管理と分散管理を含むシステムと、電力情報の集中管理と分散管理を含むシステムを電気エネルギーマネジメントシステムの拡張として認める。このシステムは、電力情報の集中管理と分散管理を含むシステムを電気エネルギーマネジメントシステムの拡張として認める。

（2）不確実な潮流変化に対応した自律分散型電気エネルギーマネジメントシステムの構築
電力情報IDチップの適用事例として、将来大きく変動し劣化することが予想される電気これらの需要家インセンティブを付与する制度設計が必要である。①の電力情報システムに関しては、エネルギー・資源効率化の公共研究(A1)「自律分散型電気エネルギ流通シミュレーションシステム」（代表者：三好健，H12～H22）の研究者全員が参加した、GPSによる同期計測機能を有する小型分散型電力モニタリングシステムについて研究展開し、基本システムの試作と機能の標準化に関して成果を納め、その活用方法として電力システムのモニタリング技術について検討してきた。また、②の運用・制御システムについては、電力品質の管理に関して、電力供給業者側の電力供給品質を向上させるための手法について成果を収め、それに基づいた新しい制度設計モデルを構築した。

（3）電力情報を利用した電力設備のリスクオラトリマジメントと、それに基づいた制度設計
送電設備である変電所、送電線、需要家変電設備など、電力流通における主要な機器群に対して、電力情報IDチップにより収集するリアルタイムデータに基づくクオリティ評価を行い、停電リスク、電圧変動リスクという観点からアセスメントを行う。具体的には、需要家変電設備の電力用コンデンサを系統側制御装置と協調的に行うことで電圧品質を向上させることを明らかにし、その結果、需要家変電設備の電力用コンデンサを系統側制御装置と協調的に行うことで電圧品質を向上させることを明らかにし、その結果、需要家変電設備の電力用コンデンサを系统側制御装置と協調的に行うことで電圧品質を向上させることを明らかにし、その結果、需要家変電設備の電力用コンデンサを系統側制御装置と協調的に行うことで電圧品質を向上させることがある。
成果を活用して電力設備のリスク・カーティアセスメントを実施して実行可能な方策について検討し、次世代の電力システムの制度設計について提言する。4. 研究成果
研究目的に従い研究計画に従い研究を実施し、下記の成果について成果を得た。
（1）分散型電力情報IDチップの開発と機能標準化：これまでの研究開発を生かして、標準化向けの分散型電力情報IDチップの改良を行った。ハードウェア開発については、既に開発したプロトタイプシステムの改善を図ることで試作機の諸機能をモジュール化し、モジュール毎に機能標準を策定した。図2にハードウェア構成を示す。
（2）不確実な潮流変化に対応した自律分散型電力監視制御システムの構築：
①広域電力系統における自律分散型制御システムの構築：広域電力系統において故障や事故による電力動調を抑制し、安定に電力を送電するための制御装置に、分散型電力情報IDチップを適用した。広域電力系統において問題となるローカル動調モードと広域電力動調モードの同時安定化、出力変動、負荷変動などに起因する電力潮流の急激な変化に対応するために、広域同期計測システムにより収集した変相角差リアルタイム情報を活用した階層方式オンライン適応型PSSを提案した。制御系は、地域系統におけるローカル動調モードを抑制するためのローカルフィードバックと地域間の広域動調を抑制するためのグローバルフィードバックを有する階層的フィードバック制御構造を有している。制御手順は以下の通りである。
(i) 系統各地点に設置した分散型電力情報IDチップ（PMI）によりリアルタイムで変相角相関情報をGlobal Control Centerに集約。
(ii) 系統変化により発生する変相角差の変化から動調モデルを同定し、系統安定状態に影響する支配電力動調モードを抽出。
(iii) 動調モードを反映した縮小系システムモデルを構築し、制御系を設計。制御系の構成図を図3に示す。

図3 階層方式適応型系統安定化装置

また、制御系を単純化標準モデルであるVESTI10システムモデルに適用し、1回線三相接地故障を想定したシミュレーションにおける発電機出力過渡応答の結果を図4に示す。

図4 制御用発電機の角速度、有効電力

②地域送電系統における分散型電圧管理制御システムの構築：近い将来、大量に導入が予想される住宅用太陽光発電システムによる電源系統電圧リスクに関して、電圧上昇、電圧不均衡、高調波など様々な電源品質を同時に保証する観点から、現有の設備である変電所変圧器アップ切替制御（LDC）、SVR、需要家SCなどを有効に活用する協調的制御手法について検討し、電力系統の複数ノードに電力情報IDチップで装置して取得したデータを有効に活用した協調的な最適化手法を提案し、実規模系統を模擬したシミュレーションによりその有効性を検証した。また、電力系統の電圧制御のための追加投資を抑制することを目的として、増加する電気自動車（EV）やバイブレートハイブリッド車（PHV）に搭載される小型蓄電池が必要に置かれることが想定され、それらの一部の空き容量を利用して電圧制御に対して自律的に充電放電させ、既設のSVRを協調的に動作させることで電圧変動を抑制する手法を提案した。需要家一部に設置された小型蓄電池による自律分散型電圧制御システムの概念図を図5に示す。

図5 蓄電池を用いた電圧制御システム

（3）電力情報用電力設備のリスクオーバーマネジメントと、それに基づいた制度設計：電力系統の電圧制御を用いて、電力情報IDチップと需要家における電力用コンデンサ設備を用いた電圧制御への応用効果について定量的に解析し、需要家設備での投資効果について検討した。その結果、電力用コンデンサ設備に自動化力率制御装置（APFQ）を設置しスケジュール制御など簡単な制御法で十分な制御効果が発揮できることが明らかにした。さらに、APFQ装置の制御効果に付加的な価値を与えることを目的として、電圧制御のみならず、高調波抑制、不平衡電圧抑制などの制御効果について検討し、電力系統のLDC、SVRなどの協調的制御アルゴリズムを提案した。そして、リアルタイムシミュレータ上で模擬的に電力系統モデルを構築し、提案手法の有効性について検証を行った。構築したリアルタイムシミュレータを図6に示す。
図6 配電系統リアルタイムシミュレータ

また、電力規制緩和の進展により予想される連系線電力の増加に伴う電力流通リスク（周波数、系統安定度、電圧など）について基礎的な検討を行う目的で、各地域の状況を考慮し活用した地域分散型周波数制御法を提案した。その結果、周波数調整用発電機の周波数制御パラメータの設定に差を及ぼすための連系線潮流量の依存して変動することが明らかになった。このことは将来の地域毎の電力設備計画に影響を与えることになる有益な結果である。

5. 主な発表論文等
（研究代表者、研究分担者及び連携者名）は下線）

〔雑誌論文〕（計 4 件）
(2) 宮崎真也，吉本陸，鶴間裕之：太陽光発電機群を用いた対応システムにおける制御制御，電気学会論文誌 B，Vol. 133，No. 1，pp. 45-55(2013)
(3) 宮崎真也，吉本陸，鶴間裕之，坂口琢磨，重藤貴也：太陽光発電機群を用いた対応システムにおける日射量情報を利用した制御制御，電気学会論文誌 B，Vol. 133，No. 1，pp. 45-55(2013)
(4) 上嶋宏明，成瀬太一，青木陸，鶴間裕之，

小林浩：配電線損失に着目した進相コンデンサによる配電系統改善手法，電気学会論文誌 B，Vol. 132，No. 3(2012)

〔学会発表〕（計 34 件）
(2) Katsuma Watanabe, Mutsumi Aoki, Hiroyuki Ukai, Shinya Sekizaki, Shunsuke Sasaki, Takaya Shigetou: Determination Method of Optimal Sending Voltage for Voltage Regulation by LRT Control in Distribution System with a Large amount of PVs, I CEE(2012)
(3) Hiroaki Uejima, Taichi Naruse, Mutsumi Aoki, Hiroyuki Ukai, Hiroshi Kobayashi: Cooperative Control of SCs Improving Power Quality in Distribution System, I CEE(2011)

〔図書〕（計 0 件）
〔産業財産権〕（計 0 件）
〔その他〕
とくにない。

6. 研究組織
(1) 研究代表者
鶴間 裕之(UKAI HIROYUKI)
名古屋工業大学・工学研究科・教授
研究者番号：40135405
(2) 研究分担者
青木 陸(AOKI MUTSUMI)
名古屋工業大学・工学研究科・准教授
研究者番号：70362316