

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成25年6月3日現在

機関番号:15501					
研究種目: 基盤研究(C)					
研究期間: 2010~2012					
課題番号: 22560698					
研究課題名(和文) 局在準位を利用した欠損型スズクラスレート化合物の熱電性能改善					
研究課題名(英文) Localized states and thermoelectric properties of					
vacancy-containing Sn-based clathrate compounds					
研究代表者					
岸本 堅剛 (KISHIMOTO KENGO)					
山口大学・大学院理工学研究科・助教					
研究者番号: 50234216					

研究成果の概要(和文):カゴ格子からなる熱電クラスレート化合物の中には、そのカゴ格子上 に原子欠損を有するものがある。その欠損は、バンド構造を通して、その熱電特性に影響を与 えると思われる。したがって、欠損構造の制御は熱電性能改善に繋がる可能性がありそうだ。 我々は、K₈Sn₄₄□₂(□は欠損)クラスレートについて、その欠損構造、熱電気的特性およびバン ド構造などについて調べた。このクラスレートは、室温付近において秩序-無秩序転移を引き 起こし、それに伴い電気伝導率および出力因子が約一桁増加した。

研究成果の概要(英文): Some thermoelectric clathrate compounds possess vacancies in their frameworks. Such vacancies usually affect their band structures, which dominate their thermoelectric properties. Thus, there is a possibility of improving thermoelectric properties by the control of vacancy-structures of such materials. We have studied the vacancy-structures, thermoelectric properties, and band structures of the clathrate compounds $K_8Sn_{44}\square_2$ (□: vacancy). The clathrate samples exhibited order-disorder phase transitions at 320 K, where their electrical conductivities and power factors almost increased tenfold.

			(金額単位:円)
	直接経費	間接経費	合 計
2010 年度	1,700,000	510,000	2, 210, 000
2011 年度	900, 000	270,000	1, 170, 000
2012 年度	800,000	240,000	1,040,000
年度			
年度			
総計	3, 400, 000	1,020,000	4, 420, 000

交付決定額

研究分野: 工学 科研費の分科・細目: 材料工学,構造・機能材料 キーワード:熱電材料,クラスレート,欠損,局在準位

1. 研究開始当初の背景

性能指数 $ZT = S^2 \sigma T / \kappa \propto m * {}^{3/2} \mu T / \kappa ň$ 高いほど,熱電材料の変換効率は高くなる (S:ゼーベック係数, σ :電気伝導率, T: 絶対温度, κ :熱伝導率, μ :移動度)。IV 族元素(Si, Ge, Sn)を母体とするクラスレー ト化合物は、高性能熱電材料の候補の一つと される。結晶中にカゴ状格子(図1参照)をも ち、その中に緩く結合されている内包原子の 非調和熱振動がフォノン散乱を引き起こす ために、格段に低い熱伝導率 κ を示すからで ある。過去約十年間、性能改善を目指した化 学組成修飾や結晶構造・熱物性解明について 研究されている。Si 系や Ge 系では、中高温 度域において、実用化の目安とされる ZT = 1を達成している(例えば、ZT = 1.03 at 940 K (0kamoto *et al.*, J. Appl. Phys. **101** (2007) 113525)。

代表者らは、本研究課題に先立って、作製 した Sn 系クラスレート試料体 K₈Sn₄₄に対して、 ゼーベック係数 Sの増大という結果を得てい る(図 2 参照)。図中の点線は、通常の理論で 予想される特性を示す。この試料体のそれは 約 300 K において急激に増加していることが わかる。方や電気伝導率 σ の低下はほとんど なく、その結果、性能指数 ZT が 0.7 程度の 試料体も存在した。

図1 原子欠損した Sn クラスレート化合物の結晶構造の 一部. 黒丸は Sn 欠損, 白丸は内包原子を表す.(左)ら せん状につながる対称性がある.(中)中間状態.(右)-見,対称性はあるが,つながりが無い.

2. 研究の目的

同じアルカリ金属を内包した Rb_sSn₄₄ につ いての同様の結果が別機関から報告されて いる(Kaltzoglou et al., J. Mater. Chem. 18 (2008)5630)。図2に示したように、350K付 近での増加が確認できる;ただし,S値は, 最大 ZT を引き出すための最適値 172 μV/K よりもかなり小さいために、この例ではすぐ には性能改善には繋がらない。しかしながら, 以下に述べる彼らのモデルは非常に示唆的 である:二元系 Sn クラスレート A₈Sn₄₄ (A = Rb,Cs)の結晶構造は、図1に示すように、 カゴ格子の一部が欠損している。内包原子か ら供給される電子がこの欠損位置に捕獲さ れることで電荷補償がなされ、半導体として 安定化している。欠損構造については、いく らか研究されており,低温側では規則性があ る(図1左)ものの、高温側では不規則になる (図1中または右)ことがわかっている。また, Cs₈Sn₄₄については、バンド計算によれば、 の欠損がつくる準位はバンドギャップ中に 存在すると予測される (Myles et al., Phys. Rev. B64 (2001)165202)。これらを受けて、 Kaltzoglou らは、欠損位置の規則/不規則変 化により, 欠損準位の状態が変化するために, ゼーベック係数 Sが増加するのではないかと

考えた。より具体的には、規則配置のときに は欠損準位でバンドギャップが埋まってい て金属的 ($S \sim 1 \mu V/K$) であるのに対して、 不規則配置のときには準位が局在化するた めにギャップが開いて半導体的 ($S \sim 100 \mu V/K$) になるのではと推察している。

図 2 二元系 Sn クラスレートのゼーベック係数の温度特 性. K₈Sn₄₄ の二つのデータは代表者ら, Rb₈Sn₄₄ のそれは Kaltzoglou らによる. 点線は構造変化が無いと仮定した ときの予想値.

代表者らの K₈Sn₄₄におけるゼーベック係数 の増大については、彼らのモデルを参考にし て、図3に示すようなシナリオを考えた。半 導体的なゼーベック係数Sの大きさを考慮す ると、欠損構造の変化前後でもバンドギャッ プが埋まることはなく、欠損準位の状態変化 (局在/非局在)が作用していると予想してい る。局在化の状態によって有効質量 Ⅲ*が変 わり, ゼーベック係数 Sが変化するのではな いかと考えた。これらについて議論を深める には,実験的な研究に加えて,理論的な検討 も不可欠である。上述した Myles らのバンド 計算は、Cs₈Sn₄₄に対する一例を示しているに 過ぎず,実際に,欠損構造の変化がその準位 形成にどういう影響を及ぼすか,あるいは, K₈Sn₄₄ についてどうなるのかは全くわかって いない。

図3バンド端近傍の状態密度のモデル図. 欠損の状態 が変わると(場合Aと場合B),その準位の局在度およ びエネルギー値が変化し,その結果,有効質量やフェル ミ準位が変化する.それを受けて,熱電特性も変化する.

そこで本研究では、まずは、K₈Sn₄₄について、その合成条件や熱処理条件などを変化させるなどして試料体の作製を試み、その試料

体の結晶構造および熱電気的特性を評価し, 欠損状態と熱電特性との関係を調べること にした。方や,電子構造計算を用いて,欠損 状態が違う場合での欠損がつくる準位を求 め,欠損構造と電子構造との関係の解明に迫 った。最終的には,欠損状態,電子構造,熱 電特性の三者の関係を把握し,熱電性能改善 のために有効な欠損構造を明らかにすると ともに,実際に作製条件を最適化し性能改善 を目指した。なお,その対象としては,K₈Sn₄₄ のほかに,化学組成修飾を施した化合物につ いても検討に入れた。

3. 研究の方法

(1) K₈Sn₄₄のゼーベック係数の増大現象の

(再)確認

この現象は、先行研究では、限られた試料 体だけで発現し、その程度にも差があった。 本研究では、まずは、この現象について再現 性を含めて確認した。そのために、種々の合 成条件パラメータを詳細に管理しながら、試 料体の作製と諸特性の測定を実施した。試料 合成条件で重要と考えられる因子は、温度の 制御とフェルミ準位、すなわち、キャリア密 度の制御である。図3に示したように、フェ ルミ準位のわずかな変化でも特性が影響さ れると考えられる。そのために、KとSn以外 の三番目元素の添加を行った。

(2) ゼーベック係数増大現象の理解 前項(1)について、ゼーベック係数の増大 と欠損構造変化との関係を理論的に考察し た。そのために、欠損型 Sn クラスレートの 電子構造計算を行うとともに、得られた電子 構造からゼーベック係数などの熱電特性を シミュレーションした。

(3) それを利用した性能改善

欠損構造を積極的に制御して, Sn 系クラス レートでの性能改善を試みた。それまでに得 られた知見に,電子構造計算を利用した理論 予測を取り入れ,性能改善が期待される欠損 構造を求め,実験的にその実現を目指した。 その結果を設計にフィードバックしながら よりよい構造を探した。

① 試料体作製

通常のセラミックス法により焼結体試料 を作製した。はじめに,所定秤量比の単体 K(純度 99%)とSn(純度 99.999%)をタンタル るつぼに入れ,アルゴンガスを満たした金属 管中に封入した。その後,電気炉にて溶融お よび熱処理を行い,溶融体を得た。それを放 電プラズマ焼結装置により焼結した。得られ た試料体に対して,必要に応じて,熱処理を 施した。

② 諸特性と結晶構造の測定評価

ゼーベック係数 Sと電気伝導率 σ の温度依 存性を 100~500 K の温度範囲にて測定した。 また、ホール測定を行い、キャリア密度 nを 求めて、それとゼーベック係数 Sの値から有 効質量 m *を見積もった。一方、結晶構造評 価に関しては、X線回折測定(XRD)を用いて リートベルト解析を行い、欠損の配置や数に ついての情報を得た;リートベルト解析には RIETAN-FPを用いた。

③ 電子構造計算

FLAPW法の計算パッケージWien2kを使用した。熱電特性のシミュレーションには、 Boltzmann 方程式を用いる半古典的な手法で 電子輸送係数(ゼーベック係数 S, 電気伝導 率 σ , 熱伝導度 κ)の計算を行った;ただし, 緩和時間の計算はEXITE コードを改良し,電 子一格子相互作用の2次まで考慮する近似を 用いた。

- 4. 研究成果
- (1)結晶構造解析

図4に室温における K₈Sn₄₄ 焼結体試料のX 線回折パターンを示す。主相はタイプ1型の クラスレート構造を呈していた;不純物相と して、7 wt.%のK₆Sn₂₅ (No. 212, P4₃32)と5 wt.%の β -Sn (No. 141, $I 4_1/amd$)を含んで いた。クラスレート構造については、組成式 $K_{s}Sn_{44}$ と同じ基本構造である cP52 ではなく, それらが 2×2×2 個集まった超構造の cI416 であることがわかった。同図(下)にはその超 構造に起因する回折ピークが観測された。こ の場合,カゴ格子上にある2個のSn欠損は 図 1(左)のように配置している。すなわち, Sn 欠損はカゴ格子上の六員環に1個ずつ存在 し、隣り合う六員環とらせん状につながる対 称性を有している。この結晶構造は低温側の 秩序相であると考えられる。表1にはリート ベルト解析結果をリストしている。

図4 K_oSn₄₄焼結体のX線回折パターン.(上)リートベル ト解析結果.(下)黒線:実測値;赤線: cI 416 構造を仮 定した場合の計算値;青線: cP 52 構造を仮定した場合 の計算値.黒線と赤線には,超構造に起因する回折ピー クが存在する.

表 1 K₈Sn₄₄焼結体の室温におけるリートベルト解析結果 (Ia-3d, a = 2.4050(2) nm).

Atom	Site	g	x	У	z	$U(A^2)$
K(1)	16a	1	0	1/2	0	0.025
K(2)	48g	1	0.246(1)	0.504	-1/8	0.039(9)
Sn(1)	96h	1	0.1560(4)	0.4429(4)	0.0000(5)	0.007(1)
Sn(2)	96h	1	0.0894(4)	0.4065(4)	0.0904(4)	0.007(1)
Sn(3)	96h	0.335(8)	0.096(3)	0.583(1)	-0.095(3)	0.007(1)
Sn(4a)	96 <i>h</i>	0.40(2)	0.150(1)	0.555(1)	-0.005(1)	0.007(1)
Sn(4b)	96 <i>h</i>	0.60	0.1758(7)	0.5667(5)	0.0017(9)	0.007(1)
Sn(5)	24d	1	1/4	3/8	0	0.007(1)
Sn(6)	24c	0.36(1)	1/4	5/8	0	0.007(1)

構造変化を調べるために、示差走査熱分析 (DSC)を行った。図5にその結果を示す。K₈Sn₄₄ 焼結体では、熱電気的特性が変化する温度で ある 320 K 付近に吸熱の信号が現れた。ここ でおそらく構造変化が起こっているものと 考えられる。それに対して、Sn の一部を Ge で置換した K₈Sn₄₂Ge₂焼結体ではそれに相当す る信号は観測されなかった。構造変化には原 子の入れ替わりが必要となるが、Sn を置換し た Ge がそれを阻害しているものと思われる。 Ge 置換は構造安定化に有効であると言える。

図 5 K₈Sn₄₄ と K₈Sn₄₂Ge₂ 焼結体の示差走査熱分析結果.ア ルゴンフロー中,10 K/min の昇温スピードで測定した.

(2) キャリア密度と移動度

図 6 に K₈Sn₄₄ 焼結体のホール測定の結果を 示す。図中にはその熱電気的特性も示してい る。熱電気的特性についての詳細は後述する が,320 K 付近に急激な変化が起こることが わかる。その温度において、キャリア密度が 急激に増加している。キャリア密度の温度依 存性を図7にプロットし直した。温度領域に より三つの活性化エネルギーが存在してい る。低温側の 40 meV は不純物準位のエネル ギーであると思われる。室温付近の 0.39 eV や 0.40 eV はバンドギャップを表していると 考えられる。また、構造変化の前後で有効質 量が 0.7 m_eから 2.1 m_eに増加することもわ かった。これらのことから、構造変化の前後 でバンド構造が変化していると考えてよい だろう。

図 6 K₈Sn₄₄ 焼結体のホール移動度 μ , キャリア密度 *n*, 熱電気的特性(*S*, σ , $S^2\sigma$)の温度依存性.

図7 K₈Sn₄₄焼結体のキャリア密度 nの温度依存性.

(3) 熱電気的特性

図8にいくつかのキャリア密度を有する K₈Sn₄₄ 焼結体の熱電気的特性の温度依存性を 示す。大まかな形はキャリア密度にかかわら ず似ていることがわかる;つまり,キャリア 密度に関係なく室温付近での急激な変化が 起こっている。なお,キャリア密度依存性は 通常のものと同じで,キャリア密度が小さい ほど,ゼーベック係数は大きく,電気伝導率 は小さくなっている。

図8 いくつかのキャリア密度を有する K_8Sn_4 焼結体の熱 電気的特性($S, \sigma, S^2\sigma$)の温度依存性.

図9にSnの一部を同じIV族元素のGe で置換したK₈Sn_{44-x}Ge_x焼結体の熱電気的特性 の温度依存性を示す。無置換体では室温付近 での急激な変化が見られるのに対して,Ge置 換体ではその変化は緩やかになっている。項 目(1)にて述べたように,Ge置換により構造 安定化がなされ,その結果,欠損配置が秩序 化できないのかもしれない。原子置換は, 高い熱電性能が出現する無秩序相の固定化 に有効な手法であると考えられる。

図 9 K_8 Sn_{44-x}Ge_x焼結体の熱電気的特性(S, σ , $S^2\sigma$)の温 度依存性.

(4) 電子構造計算

図 10 に欠損配置を変化させて計算した K_sSn₄₄のバンドギャップ近傍のバンド構造 を示す。上図は秩序構造を有する低温相で, 図 1(左)の欠損配置をとる;ただし、単位 格子は2×2×2の超構造としている。下図 は無秩序構造を有する高温相のひとつとし て、ここでは図1(右)の欠損配置をとると 仮定した。検討に入る前に2点補足してお く:前者は体心立方,後者は単純立方であ るから,図中の k 点は異なっている;また, 単位格子の大きさから前者は後者の4倍の 状態数となっている。検討に移ると,まず, 両者とも半導体となっているが、ギャップ 近傍に違いがある。上図の秩序相のほうが 狭いバンドギャップを有しているようだ。 前述した室温付近におけるキャリア密度や 熱電気的特性の温度変化はおそらくバンド 構造の変化で説明できると思われる。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計2件)

(1) M. Hayashi, <u>K. Kishimoto</u>, <u>K. Akai</u>, H. Asada, K. Kishio, and T. Koyanagi, "Preparation and thermoelectric properties of sintered *n*-type $K_8M_8Sn_{38}$ (M = Al, Ga and In) with the type-I clathrate

structure", Journal of Physics D: Applied 図 10 Sn 欠損配置を変えて計算した K_8Sn_{44} のフェルミ準 位近傍のバンド構造.(上) $1/3 \, 0.6 c$ サイトに 1 個の欠 損を cI416の対称性を持たせて配置した場合(秩序構造 である低温相に対応する).(下)全ての6c サイトに 1/3 個の欠損を配置した場合(無秩序構造である高温相に対応すると仮定した).

Physics vol. 45, pp. 455308/1-455308/11 (2012) [査読有].

② K. Kishimoto, H. Yamamoto, K. Akai, and T. Koyanagi, "Effect of Ge substitution on carrier mobilities and thermoelectric properties of sintered *p*-type type-VIII Ba₈Ga_{16+x}Sn_{30-x-y}Ge_y with the clathrate structure", Journal of Physics D: Applied Physics vol. 45, pp. 445306/1-445306/8 (2012)「査読有].

〔学会発表〕(計4件)

① 岸本堅剛, 林雅弘, 赤井光治, 小柳剛, 「欠損型クラスレート K₈(Sn, Ge)₄₄ 焼結体の 作製と熱電気的特性」,第9回日本熱電学会 学術講演会 PS-5 (東京工業大学, 東京, 2012. 8.27-28). ② 福原丈織,林雅弘,岸本堅剛,浅田裕法, 小柳剛, 「K_sGa_sSn_{38-x}Ge_xの作製とその熱電気 的特性」 第 8 回日本熱電学会学術講演会 PS-17(北海道大学, 札幌市, 2011.8.8-9). ③ <u>赤井光治,岸本堅剛</u>,「欠損型 Sn クラス レートの熱電特性に対する欠損配置依存性」 第8回日本熱電学会学術講演会 PS-37(北海 道大学, 札幌市, 2011.8.8-9). ④ 岸本堅剛,林雅弘,小柳剛,赤井光治, 「欠損を有するクラスレート化合物 KoSn4の 熱電気的特性| 第58回応用物理学関係連合 講演会 25p-KE-14 (神奈川工科大学, 厚木 市, 2011.3.25).

6. 研究組織

(1)研究代表者
岸本 堅剛(KISHIMOTO KENGO)
山口大学・大学院理工学研究科・助教
研究者番号: 50234216

(2)研究分担者

赤井 光治 (AKAI KOJI) 山口大学・大学情報機構・准教授 研究者番号: 20314825