

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成25年 5月29日現在

機関番号:32619
研究種目:基盤研究(C)(一般)
研究期間:2010~2012
課題番号:22560752
研究課題名(和文) 多孔質基材細孔中の反応制御による高温炭化水素分離膜の開発
研究課題名(英文) Development of High Temperature Hydrocarbon Separation Membrane by
Reaction Control in Pores of Porous Substrates
研究代表者
野村 幹弘 (NOMURA MIKIHIRO)
芝浦工業大学・工学部・准教授
研究者番号:50308194

研究成果の概要(和文):

高温炭化水素分離のために、シリカ複合膜の開発を行った。2種の反応種を用いる対向拡 散 CVD 法という方法で、シリカの原料として Hexyltrimethoxysilane を、酸化剤として 酸素を用い、450 ℃、5 min で蒸着した。得られた膜は、270 ℃の透過試験にて、プロ パン/プロピレン過率比は414、プロパン透過率1.0×10⁻⁸ mol m⁻² s⁻¹ Pa⁻¹と非常に高い高 温プロピレン選択透過性を示した。この値は、到達目標の4倍以上であり、現在のチャン ピオンデータである。

研究成果の概要(英文):

Silica hybrid membranes were developed for a high temperature hydrocarbon separation. The membranes were prepared by using a counter diffusion chemical vapor deposition (CVD) method that uses two reactants. The deposition was performed at 450 for 5 min by using hexyltrimethoxysilane and O₂ as a silica source and an oxidant. Permeance ratio of propane/propylene at 270 °C through the silica hybrid membrane was 414 with the propane permeance of 1.0×10^{-8} mol m⁻² s⁻¹ Pa⁻¹. The permeance ratio is the maximum value for the high temperature propane permeselective membranes at this moment.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2010年度	1, 800, 000	540, 000	2, 340, 000
2011 年度	800, 000	240, 000	1, 040, 000
2012年度	800, 000	240, 000	1, 040, 000
年度			
年度			
総計	3, 400, 000	1, 020, 000	4, 420, 000

研究分野:工学

科研費の分科・細目:プロセス工学・化工物性・移動操作・単位操作 キーワード: 膜分離・炭化水素分離・高温・シリカ複合膜

1. 研究開始当初の背景

(1)炭化水素は、これまで、主に蒸留操作 により分離されてきた。近年、アルコール水 溶液系において、無機分離膜と蒸留の組み合 わせにより、分離効率が大幅に向上すること が示されている。蒸留塔の塔頂は、300℃程 度で操作されていることも多い。このような 系に利用可能な分離膜として、無機分離膜の 開発が必要である。無機分離膜としては、ゼ オライト膜やシリカ膜などがあげられる。

(2) ここでは、アモルファスシリカをベー スとした無機分離膜に注目した。シリカ膜は、 ゾルゲル法や CVD 法などによって作製され ている。当研究グループでは、CVD 法の一 つとして、対向拡散 CVD 法によりシリカ膜 を開発してきた。対向拡散 CVD 法は、均質 な膜が得られる方法として知られているが、 炭化水素分離の報告はなかった。

2. 研究の目的

(1)本研究の目的は、300℃という高温にて、 飽和-不飽和などの炭化水素を分離する膜 を開発することである。多孔質アルミナ基材 細孔中にシリカ複合物を均質に蒸着するこ とで、Aオーダーの細孔径制御と、細孔表面 処理を同時に行う。この2つの技術の両立に より、これまで報告されていない、高温での 炭化水素の分離を目指す。細孔径の微細な制 御は、シリカ源に有機物であるアルキル基を もつものを用い、基材細孔中での分解反応を 制御することで行う。

3. 研究の方法

(1) 図1に対向拡散 CVD 装置の模式図を示 す。多孔質 γ -アルミナキャピラリー (NOK 製: 全長 350 mm、有効部分 50 mm、細孔径 4 nm、内径 2nm)を基材として用いた。基材の 両側をバイトンO-リングによりシールした。 O₂をO₃発生器 (ZOS-YB-6G,商研製) に導 入し、O₃濃度を 47g m⁻³ として、O₃/O₂の総流 量が 0.2 L min⁻¹ となるように基材の内側に 供給した。信越化学工業製の PrTMOS (Propyltrimethoxysilane)、PhTMOS (Phenyltrimethoxysilane)、HTMOS (Hexyltrimethoxysilane)のいずれかをシリカ 源として用い 0.2 L min⁻¹の N₂を 45-125℃に てバブリングさせた。

図1 蒸着装置の模式図 バブラーの温度を PrTMOS では 45℃、 PhTMOS では 75℃、HTMOS では 125℃とそ れぞれ設定し、基材の外側に流通させ製膜を 行った。蒸着温度は 150-500℃、蒸着時間は 5-90 min とした。 (2) 膜の分離性能は、H₂、N₂、SF₆、C₃H₆、 C₃H₈の単成分透過試験を用いて評価した。 270℃以下で蒸着した膜では、透過試験を蒸 着温度で測定し、270℃以上で蒸着した膜で は 270℃にて測定した。透過率は、圧力変化 法もしくは加圧法を用いて測定した。圧力変 化法では、144cm³の透過側容積を用い、大気 圧下、加圧法では差圧 0.2 MPa で測定した。

4. 研究成果

(1) PrTMOS の加水分解物 (以下、PrTMOS 粉末)の分解挙動をTGA および FT-IR を用い て調査した。図2にTGAによるN2もしくは O₃雰囲気下での PrTMOS 粉末の重量変化を 示す。N₂雰囲気下では、約100℃でわずかな 減少が見られ、その後、温度の上昇と共に2 段階の減少が観察された。100℃での減少は 物理吸着水の脱離だと考えられる。2 段階の 重量減少は、300℃~500℃間で見られた。こ れは、シリカ表面上のプロピル基の分解反応 (Si-CH₂-CH₂-CH₃ \rightarrow Si-CH₃ + CH₂=CH₂) \ddagger よびメチル基の脱離だと思われる。一方、O3 雰囲気下では、N,雰囲気下と異なる傾向を示 した。O₃雰囲気下では、重量減少は1段階で あった。この間の分解開始温度は 375℃であ った。これは、O3により、プロピル基が酸化 したためと推測される。サンプル作製時に、 アルコキシド部分が完全に加水分解し、側鎖 のプロピル基が全て残存すると仮定した場 合、重量減少は、42%となる。今回、N₂雰囲 気下での PrTMOS 粉末の重量減少は 44%で あった、PrTMOS 粉末の加水分解反応は完全 に進行していたと考えられる。

(2) 図 3 に、PrTMOS 粉末を 150~400℃での O₃ 雰囲気下において処理したサンプルの FT-IR 測定結果を示す。縦軸は、未処理の C-CH₃ (2960 cm⁻¹)の吸収で基準化した処理 後の吸収強度である。この値が大きいほどプロピル基の残存量が多いことを示している。

全サンプルの吸収比が、1 より小さいことよ り、03処理によりプロピル基が分解してい ることがわかる。150℃では吸収比0.20と小 さい値となった。これは、Fig. 3 に示したよ うに150℃のリアクター出口のO3濃度が73g m⁻³と高いため、O₃によりプロピル基が分解 されたと考えられる。一方、270℃では、吸 収比は最大の 0.41 を示した。図2 で示したよ うにリアクター出口の O3 濃度が 2.0 g m⁻³と 低い値となっていたことにより説明できる。 さらに、図3で示した熱分解挙動より、プロ ピル基の熱分解開始温度は、300℃程度であ り、270℃におけるプロピル基の熱分解量は 少ないと考えられる。また、この分解温度よ り高い400℃処理では、吸収比0.24と小さく なった。この温度では、O3 濃度が低いため、 吸収比の低下はプロピル基の熱分解が主要 因であると推測できる。

図4 PrTMOS 膜の透過特性

(3)素着時間を90minで固定して、PrTMOS、PhTMOSとHTMOSの3種類のシリカ源の検討を行った。図4に90min 蒸着膜におけるN2透過率、N2/SF6透過率比を示す製膜実験を行った150-400℃の温度範囲では、高濃度のO3雰囲気となっている200℃以下と低濃度の

O₃ 雰囲気となっている 200-350℃、O₃ が完 全に失活し、O₂ 雰囲気となっている 350℃以 上の 3 つに大きく分類することができる。

(4) シリカ源に PrTMOS を用い蒸着した膜 (以下、PrTMOS 膜)の検討を行った。 PrTMOS を用い 240℃蒸着した膜では、H₂/N₂ 透過率比が 250 であった。反応温度が 240℃ の時の膜モジュール出口でのO3濃度は22.5g m⁻³と比較的高い。低温蒸着(高 O₃濃度)条 件では H₂/N₂ 透過率比が高くなることが示さ れた。有機物の焼失が急激に進行したことで、 有機物が少なく膜中のシリカ成分が多くな ったと思われる。アモルシリカは、H2選択透 過性があるため、H₂/N₂透過率比が高い膜が 得られた。270℃蒸着では、N₂/SF₆透過率比は、 今回の検討では最大値 529 を示し、N2 透過 率は、 6.2×10^{-9} mol m⁻² s⁻¹ Pa⁻¹ となった。240°C 蒸着膜と比較して、蒸着物中の有機物の O₃ 分解が抑制されている。一方、HTMOS 膜で は、150℃蒸着膜、270℃蒸着膜および 360℃ 蒸着膜の N₂/SF₆透過率比が、それぞれ 5、12、 12 であった。PrTMOS と PhTMOS をシリカ 源として用いた場合と比較しても N₂/SF₆透 過率比が低い。また、HTMOS 膜では蒸着後 の膜表面が黒色となっていた。PrTMOS 膜、 PhTMOS 膜では、製膜後の膜表面はすべて白 色であった。この黒色蒸着物は、HTMOS 中 の炭素成分が炭化したものだと考えられる。 これより、HTMOS 由来の炭素の分解速度は、 PrTMOS、PhTMOS 由来の炭素と比較して、 遅いと推測される。

(5) PrTMOS 膜と HTMOS 膜の蒸着時間の影 響を検討した。蒸着温度は、PrTMOS では 270℃、HTMOS では 360℃とした。5 min 蒸 着膜のH₂透過率は、5.4×10⁻⁸ mol m⁻² s⁻¹ Pa⁻¹ と低い値であったのに対して、90 min 蒸着膜 では、H₂透過率は1.3×10⁻⁶ mol m⁻² s⁻¹ Pa⁻¹と 上昇した。しかし、180 min 蒸着膜では、1.0 ×10⁻⁷ mol m⁻² s⁻¹ Pa⁻¹ まで減少した。N₂ 透過率 もH2透過率の変化と同様に5 min 蒸着から、 90 min 蒸着まで上昇し、その後、180min 蒸着 膜のN2透過率は90 min 蒸着のN2透過率より 減少した。一方、SF₆透過率は、5 min 蒸着後 $6.0 \times 10^{-10} \text{ mol m}^{-2} \text{ s}^{-1} \text{ Pa}^{-1}$ であったが、徐々に 減少していき、180 min 蒸着には7.3×10⁻¹¹ mol m⁻² s⁻¹ Pa⁻¹となった。この結果、90min 蒸着後 に、N2/SF6透過率比が最大値である 529 を示 した。

図5に、蒸着温度360℃での、HTMOS 膜 の単成分ガス透過率の蒸着時間依存性を示 す。 N_2/SF_6 透過率比は、5min 蒸着後に64と 最大値を示した。90min 蒸着膜にて H_2 、 N_2 の透過率の低下と SF_6 の透過率の上昇が同時 に起こる理由として、シリカの堆積とクラッ キングが同時に起きていることが予想され る。HTMOS 膜では、360 C、5min の高温短時間蒸着を行うことで、270 C、90min 蒸着膜と比較して N₂ 透過率、N₂/SF₆ 透過率比が向上した。蒸着温度の上昇により、HTMOS 分解反応が速くなったためといえる。

図5 HTMOS 膜透過の蒸着時間依存性

(6) 図 6 に、HTMOS、5 min 蒸着膜の単成 分ガス透過率の温度依存性を示す。360℃蒸 着膜と 400℃蒸着膜は、透過挙動が大きく異 なっている。150℃蒸着膜の SF₆透過率は 2.8 ×10⁻⁸ mol m⁻² s⁻¹ Pa⁻¹であるが、360℃蒸着膜 では 5.6×10⁻¹⁰ mol m⁻² s⁻¹ Pa⁻¹と減少した。蒸 着温度の上昇による HTMOS 反応速度が上昇 し、ピンホールの少ない均質処理ができたと いえる。400℃蒸着膜では N₂ 透過率は 1.6× 10⁻⁷ mol m⁻² s⁻¹ Pa⁻¹ と、360℃蒸着の 4.4 倍とな った。逆に、SF₆透過率は、400℃蒸着膜の約 1/60 であった。また、500℃蒸着では、450℃蒸着 と比較して、H₂ 透過率が減少し、SF₆ 透過率 が上昇した。その結果、450℃膜の N₂/SF₆ 透 過率比は 2.2×10⁵ と最大値を示した。

図6 HTMOS 膜透過の蒸着時間依存性

(7) 有効な酸化剤を明確にするために、 450℃蒸着にて、O₂もしくはO₃を供給した検

討を行った。以下、それぞれ O, 膜、O, 膜と 示す。図7に、得られた膜の単成分透過率と 透過分子の L-J 径の関係を示す。酸化剤の違 いによらず、同じ様な透過性能を示す膜が得 られた。C₃H₆/C₃H₈ 透過率比は、O₃ 膜で 364 と O₂ 膜で 414 となり、いずれも非常に高い 値となった。これらは、270℃という高温透 過試験での C₃H₆/C₃H₈透過率比で、最高値で ある。この O2 膜の透過の活性化エネルギー は、C₃H₈および SF₆では、それぞれ 22 kJ mol⁻¹ と 13 kJ mol⁻¹ であった。透過の活性化エネル ギーが正なので、活性化拡散である。それに 対して、N₂および C₃H₆の透過活性化エネル ギーは、それぞれ-3.3kJ mol⁻¹ と-0.8 kJ mol⁻¹ のマイナスの値を示した。活性化拡散してい る C₃H₈および SF₆では、分子ふるいをベース とした透過挙動といえる。

図7 O₂ 膜とO₃ 膜の透過性能比較

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計6件)

- <u>野村幹弘</u>,門間慶太,木村紗有佳,松山 絵美,三宅遼,内海惠介,"シリカ複合膜 による高温 C₃H₆/C₃H₈ 分離",膜,査読 有 ,35(5), 236-241 (2010) https://www.jstage.jst.go.jp/browse/me mbrane/-char/ja/
- ② <u>Mikihiro Nomura</u>, Keita Monma, Emi Matsuyama, Sayuka Kimura, Ryo Miyake, Keisuke Utsumi, Trans. Mater. Res. Soc. Jpn., 査読有,36(2), 209-212 (2011) "Hydrogen permselective silica hybrid membranes prepared by a novel CVD method", ISSN 1382-3469
- ③ <u>野村幹弘</u>, 分離技術, 査読無,41(1), 51-55 (2011)"省エネルギー社会の実現に向けた無機分離膜の進展"
- ④ <u>野村幹弘</u>, 膜, 査読無,36(3), 91-96 (2011)"エネルギー効率利用に向けた CVD 法による無機分離膜の開発",

https://www.jstage.jst.go.jp/browse/me mbrane/-char/ja/

- ⑤ 松山絵美,木村紗有佳,門間慶太,内海 恵介,三宅遼,河本高志,黒沼良介,野 村幹弘,化学工学論文集,査読有,39(2), 98-103 (2013) "対向拡散 CVD 法により 作製したシリカ複合膜のベンゼン/シク ロヘキサン浸透気化分離"
- ⑥ 松山絵美,内海恵介,池田歩,<u>野村幹弘</u>, 化学工学論文集,査読有,39(4), · (2013)
 "対向拡散 CVD 法による高温プロピレン 透過膜の開発"
- 〔学会発表〕(計42件)
- 三宅遼ら,日本膜学会第32年会,P-12S, (2010),産業技術総合研究所 臨海副都 心センター,2010年5月13日"対向拡 散 CVD 法を用いたシリカ複合膜の細孔 径制御"
- 内海惠介ら、分離技術会 年会 2010, S8-10P, (2010),明治大学アカデミーコ モン,2010年6月4日 "対向拡散 CVD 法によるシリカ複合膜の後処理"
- ③ 小野竜平ら,分離技術会 年会 2010, S8-11P, (2010),明治大学アカデミーコ モン,2010年6月4日 "対向拡散 CVD 法によるゼオライト膜後処理技術の開 発"
- ④ <u>Mikihiro Nomura et al.</u>, Proc. of 11th International Conference on Inorganic Membranes, 415, Washington, U. S. A. (2010); July 19 "High temperature C₃H₆/C₃H₈ separation through silica hybrid membranes"
- ⑤ 小野竜平ら,化学工学会宇都宮大会 2010, PD105,(2010),宇都宮大学,2010年8 月19日"後処理によるゼオライト膜の改 良法の開発"
- ⑥ 松山絵美ら,化学工学会宇都宮大会 2010, PE122,(2010),宇都宮大学,2010年8 月 19日"有機溶媒分離用シリカ複合膜の 開発"
- ⑦ <u>野村幹</u>弘, 分離技術会 第 38 回夏季研究 討論会, I-6, (2010), 伊豆長岡 寿荘, 2010年8月27日"省エネルギー社会に向 けた無機分離膜の進展"
- ⑧ 松山絵美ら,化学工学会第42回秋季大会, W2P01,(2010),同志社大学,2010年9月7日"シリカ複合膜を用いたベンゼン ーシクロヘキサン系のPV分離"
- ⑨ 三宅遼ら,化学工学会膜工学分科会 第 10 回無機膜研究会,P-2,(2010),かた くら 諏訪湖ホテル,2010年10月22日 "シリカ複合膜の細孔径制御法の検討"
- ① 小野竜平ら,化学工学会膜工学分科会第10回無機膜研究会,P-3,(2010),かたくら諏訪湖ホテル,2010年10月22

日 "親水性ゼオライト膜の後処理による 選択性向上"

- Mikihiro Nomuraet al., Proc. of 3rd International Conference on Ceramics, 164, Osaka, Japan (2010); November 18 "High temperature gas separation through silica hybrid membranes prepared by using a counter diffusion CVD method"
- ① <u>野村幹弘ら</u>,日本膜学会 膜シンポジウム 2010,212 (2010),京都大学,2010年11月20日"分子ふるいシリカ複合膜の作製とその透過特性"
- (3) <u>野村幹弘ら</u>,第20回日本 MRS 学術シン ポジウム,F-04-I (2010),横浜市開港記 念会館,2010年12月21日"新規 CVD 法を用いた水素選択透過シリカ複合膜の 開発"
- ④ 小野竜平ら,化学工学会第 76 回年会, E203 (2011),東京農工大学,2011 年 3 月 23 日 "CVD 法によるゼオライト膜の 改良"
- (5) 内海恵介ら、日本膜学会第33年会、P-15S、 (2011)、産業技術総合研究所 臨海副都 心センター、2011年5月12日"シリカ 複合膜の細孔径制御メカニズムの検討"
- 16 酒井章吾ら,日本膜学会第33年会,P-17S, (2011),産業技術総合研究所 臨海副都 心センター,2011年5月12日 "対向拡 散 CVD 法による親水性ゼオライト膜の 後処理"
- ① 河本高志ら、日本膜学会第33年会、P-18S、 (2011)、産業技術総合研究所 臨海副都 心センター、2011年5月12日"シリカ 複合膜による有機溶媒 PV 分離"
- 18 黒沼良介ら,分離技術会 年会 2011, S7-P13, (2011),明治大学生田校舎, 2011 年6月3日 "粉末分析を利用したシリカ 複合膜蒸着法の検討"
- ⑬ 玉城大己ら,分離技術会 年会 2011, S7-P2, (2011),明治大学生田校舎,2011 年6月3日 "MOR ゼオライト膜の改質 法の開発"
- 20 松山絵美ら,, 分離技術会 年会 2011, S7-P14, (2011), 明治大学生田校舎, 2011 年6月3日"高温 C₃H₆/C₃H₈分離用シリ カ膜の開発"
- 21 <u>Mikihiro Nomura et al.</u>, 6th Joint China/Japan Chemical Engineering Symposium (CJCES), SP -P-01, Wuhan, China (2011); June 23 "Preparation of molecular sieve silica membranes by using a O₃ counter diffusion CVD method"
- 22 <u>Mikihiro Nomura et al</u>, Proc. of International Congress on Membrane and Membrane Processes 2011,

1L-ICOM589, Amsterdam, The Netherlands (2011); July 25 "Post-treatment of a MOR zeolite membrane by a counter diffusion CVD method using alkyl-siliconalkoxide as a reactant"

- 23 <u>Mikihiro Nomura et al</u>, Proc. of International Congress on Membrane and Membrane Processes 2011, 1D-ICOM1296, Amsterdam, The Netherlands (2011); July 25 "Pore size control of silica hybrid membranes for hydrocarbon separations"
- 24 玉城大己ら, ゼオライト学会 ゼオライ ト夏の学校, 14, (2011), マホロバマイ ンズ三浦, 2011 年 9 月 2 日 "対向拡散 CVD 法による MOR 膜の後処理"
- 25 松山絵美ら, 化学工学会第43回秋季大会, P2C03, (2011), 名古屋工業大学, 2011 年9月15日 "対向拡散 CVD 法による高 温プロパン-プロピレン分離膜の開発"
- 26 小野竜平ら, 化学工学会第43回秋季大会, P2C01, (2011), 名古屋工業大学, 2011 年9月15日"IPA 水溶液分離用ゼオライ ト膜の改質方法の開発"
- 27 <u>野村幹弘ら</u>,日本膜学会 膜シンポジウム 2011,123,(2011),健康文化村カル チャーリゾートフェストーネ,2011年 11月18日"後処理によるゼオライト膜の粒界処理"
- 28 <u>野村幹弘ら</u>,第31回水素エネルギー協会 大会,A10,タワーホール船堀,2011年 11月30日"細孔径制御による水素選択 透過膜の最適化"
- 29 松山絵美ら、化学工学会第 77 回年会、 F113、(2012)、工学院大学、2012 年 3 月 15 日"炭化水素選択透過シリカ複合膜の製膜条件検討"
- 30 池田歩ら,日本膜学会第34年会,P-14S, (2012),早稲田大学大久保キャンパス, 2012年5月8日"高温炭化水素分離用シ リカ膜の開発"
- 31 松山絵美ら, 第1回 JACI/GSC シンポジ ウム, A-41, (2012), ベルサール神田, 2012年6月13日 "省エネルギープロセ ス実現のための高温炭化水素分離膜の開 発"
- 32 <u>Mikihiro Nomura et al.</u>, Proc. of 12th International Conference on Inorganic Membranes, O1A.2, Twente, The Netherlands (2012); July 10 "High temperature propane/propylene separation through a silica hybrid membrane"
- <u>Mikihiro Nomura et al.</u>, Proc. of 12th International Conference on Inorganic Membranes, P2.79, Twente, The

Netherlands (2012); July 12 "Novel CVD treatment for a MOR zeolite membrane"

- 34 <u>Mikihiro Nomura et al.</u>, Proc. of International Symposium on Zeolites and Microporous Crystals 2012, Hiroshima Aster Plaza, Japan, P-204, (2012); July 31"Post-treatment of a MOR zeolite membrane for improvement of water permselectivity"
- 35 池田歩ら, 化学工学会横浜大会 2012, P152, (2012), 横浜国立大学, 2012 年 8 月 30 日"シリカ膜の逆浸透分離の可能性 検討"
- 36 松山絵美ら, 化学工学会第44回秋季大会, XA2P03, (2012), 東北大学, 2012年9 月20日"シリカ複合膜の高温二酸化炭素 透過特性"
- 37 松山絵美ら,化学工学会膜工学分科会 第11回無機膜研究会,P02,(2012),三 谷温泉 ホテル三河海陽閣,2012 年 10 月26日"高温ガス分離用シリカ複合膜の 開発"
- 38 池田歩ら、日本膜学会 膜シンポジウム
 2012, P-9, (2012)、神戸大学、2012
 年11月6日 "シリカ逆浸透膜の開発"
- 39 <u>Mikihiro Nomura</u>, Seminar at Chungnam National University 24th Jan. 2013 (2013)"The frontline of Inorganic Membranes ~ Efficient energy utilization through an inorganic membrane~"
- 40 <u>野村幹弘</u>, 先端膜工学研究推進機構 膜 工学サロン, B-2, (2013), 神戸大学, 2013 年3月5日"無機分離膜の水処理応用への 可能性"
- 41 松山絵美ら, 化学工学会第 78 回年会, Q203, (2013), 大阪大学, 2013 年 3 月 18 日"シリカ複合膜を用いたメタン/エタ ン分離"
- 42 <u>Mikihiro Nomura</u>, AUTM Asia 2013, Kyoto International Conference Center, Japan (2013); March 20 "Innovative separation method for a target gas using a counter diffusion deposition method \sim Efficient separation of hydrocarbons through ceramic membranes \sim ",

6.研究組織
 (1)研究代表者
 野村 幹弘(NOMURA MIKIHIRO)
 芝浦工業大学・工学部・准教授
 研究者番号:50308194