

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成 25 年 5月 24 日現在

機関番号:11201	
研究種目:若手研究(A)
研究期間:2010 ~ 2	012
課題番号:22684031	
研究課題名(和文)	発散磁場配位中ダブルレイヤーイオン加速の制御と大出力化
研究課題名(英文)	Control and Improvement of a double layer ion acceleration in a magnetically expanding plasma
研究代表者	
高橋 和貴(TAKAHASHI KAZUNORI)	
岩手大学・工学部・	·助教
研究者番号:80451	491

研究成果の概要(和文):本研究では、磁気ノズル型の発散磁場配位環境下で生成した高密度高 周波プラズマ中で自発的に形成されるダブルレイヤー構造に関連する粒子ダイナミクスの解明, および付随して生じるイオン加速現象の電気推進機への応用の可能性を検証した.永久磁石プ ラズマ源の開発と改良を行い、大口径イオンビーム励起に成功した.更に、無電極へリコンプ ラズマ源で得られる推力の計測を世界に先駆けて行った.

研究成果の概要 (英文): Plasma dynamics in a magnetically expanding plasma including an electric double layer (DL) and its potential application to an electric propulsion device are investigated here. More efficient permanent magnet helicon plasma source is also developed and a generation of the large diameter ion beam is achieved. Further, the thrust imparted from a magnetic nozzle helicon plasma thruster is directly measured for the first time and compared with the theory.

交付決定額

(金額	単位:円)
直接経費 間接経費 合	
2010 年度 7, 100, 000 2, 130, 000	9, 230, 000
2011 年度 7,900,000 2,370,000 1	0,270,000
2012 年度 4,600,000 1,380,000	5, 980, 000
年度	
年度	
総計 19,600,000 5,880,000 2	5, 480, 000

研究分野:数物系科学 科研費の分科・細目:プラズマ科学 キーワード:プラズマ・核融合,イオン加速,ダブルレイヤー,電気推進

1. 研究開始当初の背景

惑星探査機や人工衛星の推進エンジンと して電気推進機が注目されている.現行の電 気推進機では、プラズマ生成やイオン加速に 電極を用いているため長寿命化が大きな課 題となっている.一方で、長寿命化を実現し うるシステムを念頭に置いて、無電極粒子加 速が研究されている.特に近年、電磁石を利 用して形成した発散型磁場配位下でのヘリ コン波放電中に、プラズマ中に自発的に形成 される非線形電位構造ダブルレイヤー(電気 二重層)が観測され、その電位構造でイオンが 加速されることが明らかになっており、この 現象を電気推進に応用する研究が行われて いる.またこのヘリコンダブルレイヤー形成 に伴う粒子の挙動に関しては不明な点が多 く、応用を考えた際にはこのダブルレイヤー の電位差に相当するイオン加速エネルギー を積極的に制御する必要がある.

2. 研究の目的

本研究では、先ずはダブルレイヤー、及び 付随して励起される超音速イオンビームに 関与するプラズマダイナミクスの体系的解 明を行う.更に自発的ダブルレイヤーの電位 降下とイオン加速エネルギーを積極的に制 御し高エネルギー化を達成する手法を確立 することで、プラズマ中無電極イオン加速に 関する研究の新展開を図ることを目的とす る.これまでに開発してきた永久磁石利用発 化、イオンビーム発散性の向上等、電気推進 機に要求される諸特性に関しても総合的な 実験を行い、長寿命・低消費電力の無電極プ ラズマ推進機への応用を展開する.

研究の方法

本研究ではプラズマダイナミクスの解明 とダブルレイヤーイオン加速の積極的制御 に関しては、電磁石を用いて発散磁場を形成 する EMPI 装置,および永久磁石を用いて発 散磁場形成が可能な PMPI 装置を用いて行っ た.また、永久磁石プラズマ源の大口径化と 高密度化に関しては、L-PMPI 装置を用いた. さらにプラズマ推進機への応用を展開する ためには推力の計測が必須課題であり、それ を目的として HPT-I 装置を用いて実験を行っ た.

典型的な装置概略図を図1に示す。 金属製 真空容器(拡散容器)にガラス管(プラズマ 源)を接続し高真空領域まで減圧した後に, ガラス管上流からアルゴンなどの動作ガス を導入し,真空容器内部を数 mTorr 以下に保 つ. ガラス管周辺に設置した高周波アンテナ (ダブルループアンテナ,サドルアンテナ, ヘリカルアンテナ等)に 13.56 MHz の高周波 電力を投入し、 ヘリコン波放電もしくは誘導 結合性放電により高密度プラズマを生成す る.ここでガラス管周辺にソレノイドコイル または永久磁石アレイを設置して発散磁場 型の磁気ノズルを印加することが可能とな っていう.プラズマ諸量の計測には静電ラン グミュアプロ-ブと静電イオンエネルギー アナライザーを用いた.

図 1: 典型的な装置概略図. 図中の細線は外部 印加磁力線.

図 2: 推力計測実験装置(HPT-I)の概略図.

図 3: プラズマ電位構造の二次元分布計測結 果. (a) 0.35 mTorr, (b) 1 mTorr.

また図2には推力計測実験装置(HPT-I)の 概略図を示す.真空容器内部にプラズマ源全 体を導入し,変形振子型の推力計測装置に接 続する.プラズマ生成の際の振子の変位をレ ーザー変位計により精密に計測することで, 推力を求めることが可能となっている.

4. 研究成果

図3には、PMPI装置で計測したプラズマ電 位構造の二次元分布を示す.ここで動作ガス 圧は(a) 0.35 mTorr,(b) 1 mTorr としてあ る.ガス圧が低い場合には平板上の電位降下 が誘起されるのに対して、ガス圧をあげた際

図 4: イオンビーム半径の軸方向分布計測結 果 *r*_{beam}と計算結果 *r*_{cal}.

図 5: プラズマ源出口近傍におけるイオンエ ネルギー分布関数のプラズマ源磁場強度依存 性. (a) プラズマ源直径 $r_p = 13.5$ cm, (b) r_p = 6.5 cm, (c) $r_p = 4.5$ cm. IEDF: コンター 表示,下流域プラズマ電位: \bigcirc ,イオンビー ム電位: \Box .

には半球状の電位構造が形成されることが 実験的に示された.同条件下でイオンビーム の空間分布の計測も行っており,前者の場合 には発散角度の狭いイオンビームが励起さ れるのに対して,後者の半球状の電位構造で は空間的に発散したイオン加速現象が起こ っていることが明らかになった.

またここで励起されるイオンビームの半 径を見積, z 軸方向分布をプロットしたもの

図 6: ダブルレイヤーの上流(高電位側)で計 測した EEPF(〇). x = 1-2.5 における EEPF の計算結果.

を図4に示す(□). 図中の実線はビーム半径 が磁力線の沿って広がるという磁化モデル を用いて計算したビーム半径であり, z ~ 7cm 近傍において計測値が理論値から大きく 逸脱していることが分かる. すなわち, ダブ ルレイヤーによって加速されたイオンビー ムは磁力線から逸脱するディタッチメント 現象を伴っていることが明らかになったと いえる.

図 5 にはプラズマ源直径 (a)r_n = 13.5cm, (b) $r_p = 6.5 \text{cm}$, (c) $r_p = 4.5 \text{cm}$ の場合にプラ ズマ源下流域で計測したイオンエネルギー 分布関数の磁場強度依存性をコンター表示 で示す. 図中〇と口は、プラズマ電位とイオ ンビーム電位の計測結果をプロットしたも のであり、□がプロットされている場合のみ ダブルレイヤーとイオン加速が起こってい ることを示している.図5より、プラズマ源 の直径が小さくなるにつれてダブルレイヤ 一形成に必要となる磁場強度が増大してい ることが明らかになった. さらに詳細なデー タ解析により、このダブルレイヤー形成の磁 場閾値は磁場強度で決定されるイオンのラ ーマー半径とプラズマ源の半径が一致した とき、すなわちプラズマ源内部でイオンが磁 化される値に一致することが明らかになっ た

また本研究ではダブルレイヤーの電位差 を決定づけると予想される高電位側(プラズ マ源側)の電子エネルギー確率関数(EEPF)の 計測とモデリングを行った.高電位側で計測 した典型的な EEPF の結果を図6に〇で示す. 電位降下に相当するエネルギーをbreak よりも 高エネルギー成分が枯渇した形状となり,上 記とは全く異なる形状であることが分かる. そこで観測された EEPF に関する理論的な解 析を行った.電子温度の理論値は電離と粒子 損失のバランス方程式で求めることが出来 るが,一般には Maxwell 分布を考慮して解析

図 7: 実効電子温度 Teff のガス圧依存性の実 験結果と計算結果. (\blacksquare , ×): PMPI, アルゴ ン. (\Box , \triangle): Chi-Kung, アルゴン. (\bigcirc , \diamondsuit): Chi-Kung, キセノン. 点線は比較のために示 したアルゴン, Chi-Kung の条件での x = 1 と した場合の計算結果.

が行われる. 今回はこのバランス方程式に EEPF の形状の効果を取り入れた解析を行っ た. EEPF $g_p(\varepsilon_e)$ を一般化した形状を式(1)の ように定義する. ここで EEPF の形状は式中 の x の値で決定される. 式(1)は, x = 1 が Maxwell 分布, x = 2 が Druyvesteyn 分布に 相当する.

$$g_p(\varepsilon_e) = g_x \frac{n_e}{T_{eff}^{2/2}} \exp\left[-C_x \left(\varepsilon_e/T_{eff}\right)^x\right], \quad \cdots (1)$$

図 6 中に x の値を変化させた場合の式(1)の 計算値を示す.ここで実効電子温度 T_{eff} には, 〇で示した実験結果から求めた値を用いた. 図 6 を見ると x = 2, すなわち Druyvesteyn 分布の際に最も近い値を示し, DL 形成に伴い 観測される高エネルギー電子が枯渇した形 状の EEPF は, Druyvesteyn 分布により近似で きることが分かる.この一般化した分布関数 形状[式(1)]を粒子バランス方程式へと導 入し,実効電子温度を求めた.図7は,実効 電子温度 T_{eff} のガス圧依存性となっており,

(■,×)PMPI 装置, アルゴン,(□, △)Chi-Kung 装置, アルゴン,(○, ◇)Chi-Kung 装置, アルゴン,(○, ◇)Chi-Kung 装置, キセノンの条件下での計 測結果と計算結果を示している.計算結果と 計測結果はよく一致しており,高エネルギー 電子が枯渇した EEPF によって高電位側の粒 子バランスが満足されていることが明らか になった.このことから,上記 EEPF によっ てダブルレイヤー構造が維持されているこ と考えられ,発散磁場配位下で自発的に形成 される構造は,これまで報告されたダブルレ イヤーとは異なる形成機構を有している可 能性が示唆されたといえる.また,上記の手 法でダブルレイヤーを含む高周波プラズマ 源内部の電子エネルギー分布関数をモデリ

図 8: イオンビームエネルギーe_{beam}の外部印 加磁場依存性.

ングすることが可能となり, current-freeの 条件より CFDL の電位降下は得られた実効電 子温度の3倍程度になることが明らかになっ た.この結果はこれまでに実験で観測されて きた電位降下と近い値を示している.

上記の結果より、電子がダブルレイヤーの 電位降下を乗り越えて通過する際にエネル ギーを与え,そのエネルギーがイオンの加速 エネルギーへと変換されていると考えられ る. 従って電子エネルギー分布関数の積極的 制御によってダブルレイヤーイオン加速の 制御と高エネルギー化が実現できる可能性 がある. そこで電子銃を用いて電子を注入し た際の,イオン加速エネルギーの磁場強度依 存性を図8に示す.ここで●は電子非入射時, □は電子注入時の計測結果である.電子を注 入しない場合には加速エネルギーは 20eV 程 度で飽和しているが, 電子注入時には磁場強 度の増大に伴い加速エネルギーが増加し続 けることが実験的に明らかになった. すなわ ち本実験により電子エネルギー分布制御に よるダブルレイヤーイオン加速制御が実証 されたといえる.

上記一連の研究によりダブルレイヤーの 外部パラメータに対する振る舞いと、イオ ン・電子の挙動が体系的に解明されたといえ る.このプラズマ源をスラスターへと応用展 開するために、図2に示した装置を用いてへ リコンプラズマスラスターの推力計測を行 った.図9には典型的なプラズマ生成時の推 力計測用振子の変位波形を示す.ここでプラ ズマ生成のための高周波電力は、t=20 - 30 sec の間ON状態としている.プラズマ生成

図 9: プラズマ生成時の変位波形.プラズマ生 成は t = 20-30 sec.

図 10: (a)磁場強度の z 軸方向分布.(b) 磁力 線構造.(c)規格課電子圧力の軸方向分布.こ こで,A,Bにはソレノイドコイル.Cには永 久磁石を使用して磁気ノズルを形成してい る.

に伴い振子型変位計が z 軸負の方向に移動し, プラズマ OFF と同時に元の位置に戻ってい ることが分かる.このデータと図 18 と同様 にして求めたキャリブレーション係数を用 いて推力を求めることが出来る.

図 10 には今回の実験で用いた(a)磁場強度

図 11: 磁場配位 (a) A, (b) B, (c) C における推 力の直接計測結果 ($T_{total} \Box, T_B \bigcirc$). 図中実線, 破線, 点線は T_{total} , T_B , T_s の計算結果.

の z 軸方向分布と(b)磁力線構造を示す. こ こで, A, B の配位ではソレノイドコイル, C では永久磁石アレイを用いて磁気ノズルを 形成している. また図 10(c)には規格化電子 圧力の z 軸方向分布を示す. ダブルレイヤー が形成される A, C の条件ではプラズマ源出 口近傍で急激な圧力勾配が生じ, この領域で 静電的なイオン加速が起きていると考えら れる. 一方で B ではボルツマン関係に従った 緩やかな電位勾配と圧力勾配が形成され, こ の条件でも静電的なイオン加速は起きてい ると考えられる.

この3種類の条件で各種推力成分(ガラ ス管から放出されるモーメントT_s,磁力線構 造に起因するモーメント増分T_a,総推力 T_{total})の計測を行った.その結果を図11に 示す.ここで口と〇はT_{total},T_Bの実測値であ る.いずれの場合も数mNの総推力が得られ ており,特にBの配位で高い推力が得られて いることが分かる.この際のプラズマ生成部 の密度に大きな変化はなく,T_Bの計測を行っ たところ,Bの配置でのみ磁力線に起因する 力T_Bの値が大きいことが分かる.すなわちへ リコンプラズマスラスターにおける推力は, プラズマ生成部であるガラス管から放出されるモーメントに加えて,磁気ノズル中での モーメント増大分が大きく寄与する可能性 が実証された.

5. 主な発表論文等

〔雑誌論文〕(計25件)

- ① <u>K. Takahashi</u>, Radiofrequency antenna for suppression of parasitic discharges in a helicon plasma thruster experiment, Review of Scientific Instruments, 査読有り, vol. 83, pp. 083508-1-4 (2012).
- ② <u>K. Takahashi</u>, T. Lafleur, C. Charles, P. Alexander, and R.W. Boswell, *Axial force imparted by a current-free magnetically expanding plasma*, Physics of Plasmas, 査 読有り, vol. 19, pp. 083509-1-8 (2012).
- ③ <u>K. Takahashi</u>, T. Lafleur, C. Charles, P. Alexander, and R.W. Boswell, *Electron diamagnetic effect on axial force in an expanding plasma: Experiments and theory*, Physical Review Letters, 査読有り, vol. 107, pp. 235001-1-4 (2011).
- ④ <u>K. Takahashi</u> and T. Fujiwara, Ion energy distributions in a permanent-magnet-expanded plasma containing an electric double layer, IEEE Transactions on Plasma Science, 査読有り, vol. 39, pp. 2444 2445 (2011).
- ⑤ <u>K. Takahashi</u>, C. Charles, R.W. Boswell, and T. Fujiwara, *Electron Energy Distribution of a Current-Free Double Layer: Druyvesteyn Theory and Experiments*, Physical Review Letters, 査読有り, vol. 107, pp. 035002-1 -4 (2011).
- ⑥ <u>K. Takahashi</u>, T. Lafleur, C. Charles, P. Alexander, R. W. Boswell, M. Perren, R. Laine, S. Pottinger, V. Lappas, T. Harle, and D. Lamprou, *Direct thrust measurement of a permanent magnet helicon double layer thruster*, Journal of Physics D: Applied Physics, 査読有り, vol. 44, pp. 015204-1 5 (2011).
- ⑦ <u>K. Takahashi</u>, Y. Itoh, and T. Fujiwara, *Operation of a permanent-magnetsexpanding plasma source connected to a large-volume diffusion chamber*, Journal of Physics D: Applied Physics, 査読有り, vol. 44, pp. 015204-1 - 5 (2011).
- ⑧ <u>K. Takahashi</u>, C. Charles, R.W. Boswell, and T. Fujiwara, *Double-layer ion acceleration* triggered by ion magnetization in expanding radiofrequency plasma sources, Applied Physics Letters, 査読有り, vol. 97, pp. 141503-1 - 3 (2010).
- 9 <u>K. Takahashi</u> and T. Fujiwara, *Ion*

acceleration enhanced by additional neutralizing electrons in a magnetically expanding double layer plasma, Physics of Plasmas, 査読有り, vol. 17, pp. 104505-1 - 4 (2010).

- 10 <u>K. Takahashi</u>, Y. Shida, and T. Fujiwara, *Effects of the magnetic fields on ion beam energy in a magnetically expanding plasma*, Journal of Plasma and Fusion Research SERIES, 査読有り, vol. 9, pp. 381-386 (2010).
- <u>K. Takahashi</u>, Y. Igarashi, and T. Fujiwara, *Plane and hemispherical potential structures in magnetically expanding plasmas*, Applied Physics Letters, 査読有り, vol. 97, pp. 041501-1-3 (2010).
- <u>K. Takahashi</u>, C. Charles, R.W. Boswell, M.A. Lieberman, and R. Hatakeyama, *Characterization of the temperature of free electrons diffusing from a magnetically expanding current-free double layer plasma*, Journal of Physics D: Applied Physics, 査読有り, vol. 43, pp. 162001-1-4 (2010).
- 〔学会発表〕(計 39 件)
- <u>K. Takahashi</u>, C. Charles and R.W. Boswell, *Performance characterization of a permanent magnets helicon plasma thruster*, 65th Annual Gaseous Electronics Conference, 2012.10.26, Texas University (USA).
- ② <u>K. Takahashi</u>, C. Charles and R.W. Boswell, Electron diamagnetic effect in a magnetic nozzle on a helicon plasma thruster performance, 65th Annual Gaseous Electronics Conference, 2012.10.22, Texas University (USA).
- ③ <u>K. Takahashi</u>, Direct thrust measurement of a permanent magnets helicon plasma thruster for space propulsion, The international conference on open magnetic systems for plasma confinement, 2012.8.27, 筑波国際会議場(茨城県).
- ④ 高橋和貴, ヘリコンダブルレイヤープラズマ中の粒子エネルギー分布と電気推進への展開,日本物理学会2012年若手研究者賞受賞記念講演,2012.3.24,関西学院大学(兵庫県).
- 6. 研究組織
- (1)研究代表者

高橋 和貴 (TAKAHASHI KAZUNORI) 岩手大学・工学部・助教 研究者番号: 80451491