科学研究費助成事業(科学研究費補助金)研究成果報告書

平成 24 年 6 月 15 日現在

機関番号:84404 研究種目:若手研究(研究期間:2010~201 課題番号:22790035	B) 1			
研究課題名(和文)	担体捕捉による細胞内集積を基盤とした新規腫瘍イメージング 放射性分子プローブの開発			
研究課題名(英文)	Synthesis and evaluation of an <i>in vivo</i> imaging probe for tumor based on the intracellular transporting system			
研究代表者				
河嶋 秀和(HIDEKAZU KAWASHIMA)				
独立行政法人 国立循環器病研究センター・画像診断医学部・室長 研究者番号 : 70359438				

研究成果の概要(和文): I型ペプチドトランスポーター(PEPT1)による細胞内送達を利用した PETプローブを設計し、腫瘍のイメージングを試みた。phenylalanineを含むジペプチドがPEPT1 に基質として認識されるという報告に基づき、同アミノ酸にペプチド結合を介して 2-[¹⁸F]fluoronicotinic acidを導入した化合物、2-[¹⁸F]FNA-Pheを新規合成した。培養ヒト膵 臓癌細胞を用いた検討から本化合物のPEPT1による細胞取込みが示され、また、担癌動物に静 脈内投与した結果、腫瘍を明瞭に描出できた。

研究成果の概要 (英文): Peptide transporter-1 (PEPT1) is expected to be a target for the tumor-selective molecular delivery. Because several phenylalanine-containing dipeptides are well recognized by PEPT1 as substrates, we designed and synthesized a peptidergic compound consisting of 2-[¹⁸F]fluoronicotinic acid and phenylalanine (2-[¹⁸F]FNA-Phe) as a PET probe for tumor imaging. The uptake to human pancreatic tumor cells (AsPC-1) that expresses PEPT1 was measured *in vitro*, which demonstrated that 2-[¹⁸F]FNA-Phe was taken up into cells via PEPT1. When 2-[¹⁸F]FNA-Phe was intravenously injected to BALB/c nude mice bearing AsPC-1, the tumor was clearly visualized.

			(金額単位:円)
	直接経費	間接経費	合 計
2010年度	1, 900, 000	570, 000	2, 470, 000
2011年度	1, 100, 000	330, 000	1, 430, 000
年度			
年度			
年度			
総計	3, 000, 000	900, 000	3, 900, 000

研究分野:医歯薬学

交付決定額

科研費の分科・細目:薬学・物理系薬学

キーワード:腫瘍、分子イメージング、ペプチドトランスポーター、陽電子断層撮像法、RI-DDS

1. 研究開始当初の背景

 (1) 悪性腫瘍は、予防,診断,治療の領域 から多角的なアプローチが求められている。 これらの中でも、病巣の検出はSingle Photon Emission Computed Tomography (SPECT) や Positron Emission Tomography (PET) 等、 分子イメージングと称される生体情報を可 視化する技術の進歩により飛躍的に向上し た。特に 2-deoxy-2-[¹⁸F]fluoro-D-glucose ([¹⁸F]FDG)を用いたPETは、腫瘍の客観的診 断基準として臨床スクリーニングで汎用さ れるが、本薬剤は炎症性疾患等に集積する偽 陽性が問題となっている。したがって、さら に診断精度を高めた分子イメージングプロ ーブの開発が強く望まれている。

(2) I型ペプチドトランスポーター(PEPT1) は、プロトン勾配を利用したH^{*}との共輸送に よりジペプチドやペプチド様化合物を細胞 内へ移送する担体である。PEPT1 は種々の腫 瘍細胞膜において高発現しており(Deborah E. *et al.*, Cancer Res. **58**)、腫瘍に対する分 子送達の標的として注目されている。

(3) 近年、PEPT1 を標的とした、C-11 標識 glycylsarcosine ([¹¹C]Gly-Sar) による担癌 動物のPET撮像実験が報告された (Matsuoka K. *et al.*, J. Nucl. Med. **49**)。しかし、C-11 は半減期が 20.4 分と短いため、臨床上、半 減期に適応した時間内での腫瘍特異的イメ ージの取得が困難と予想され、また、PEPT1 は立体構造や基質認識性について十分な解 明が進んでいないことから、イメージングへ の応用にはさらなる検討が必要である。

2. 研究の目的

本研究では、PEPT1 による効率的な細胞内 送達を利用した、腫瘍の高精度かつ高感度イ メージングに資する新規放射性分子プロー ブの開発を目的とした。すなわち、腫瘍細胞 内への移行性が低い放射性分子に、PEPT1 の 基質として認識されるペプチド構造を導入 した化合物を合成するとともに、腫瘍イメー ジング薬としての有用性を検討した。

3. 研究の方法

(1) 構造中にphenylalanineを含むジペプチ ドがPEPT1 に基質として強く認識されること (Balvunder S. *et al.*, J. Med. Chem. **49**)、 さらに、半減期がC-11 よりも長い (109.8分) PET核種のF-18 を効率的に導入することを考 慮し、phenylalanineにペプチド結合を介し て 2-[¹⁸F]fluoronicotinic acidを導入した 化合物、(N-((2-[¹⁸F]fluoro-3-pyridinyl) carbonyl)phenylalanine : 2-[¹⁸F]FNA-Phe) を設計した (図 1)。

図1 2-[¹⁸F]FNA-Pheの構造

tert-butyl 2-bromonicotinateに対する F-18 フッ化物イオンの求核置換反応後、加水 分解により 2-[¹⁸F]fluoronicotinic acidを 得た。さらに、phenylalanine誘導体との縮 合、脱保護反応を経て 2-[¹⁸F]FNA-Pheを合成 した。

<u>HPLC精製条件</u>カラム:Hydrosphere C18 (I.D. 6.0×250 mm),流速:1.5 ml/min, 移動相:アセトニトリル(0.1% TFA)/水(0.1% TFA) = 65/35

<u>HPLC分析条件</u>カラム:Hydrosphere C18 (I.D. 4.6×150 mm),流速:1.0 ml/min, 移動相:アセトニトリル(0.1% TFA)/水(0.1% TFA) = 65/35

 (2)各2mlの1-オクタノールと0.1Mリン 酸緩衝液(pH 5.5, 6.0, 7.0, 7.4)が入っ た試験管に2-[¹⁸F]FNA-Pheを加え、1分間×3 回の攪拌後、25°Cで20分間静置する操作を3 回繰り返し、1,500gで5分間遠心分離した。
各層から800µlずつを採取した後、放射能を 測定し、1-オクタノール/緩衝液の放射能比 から分配係数(PC)を求めた。

(3) 2-[¹⁸F]FNA-PheをddYマウスから採取した血漿と混合後、37°Cで2時間インキュベートし、HPLC分析により未変化体の割合を算出した。

(4) 培養ヒト膵臓癌 (AsPC-1) 細胞を、37°C, 5% CO_2 の条件下、25 mM HEPES (pH 5.5, 6.0, 7.4) で10分間プレインキュベートした。そ の後、25 mM MES (pH 5.5, 6.0, 7.4) で調 製した 2-[¹⁸F]FNA-Pheまたは[¹⁴C]G1y-Sarを 添加し、37°Cでインキュベートした。5, 30, 60 分後にMES溶液を除去し、HEPESで 2 回洗浄 後、細胞溶解液 (0.1 N NaOH) を加えた。溶 液を回収し、細胞内に集積した放射能を測定 した。BCA法によりタンパク定量し、タンパ ク量による取込み率補正を行った。取込み阻 害実験では、2-[¹⁸F]FNA-Pheと非放射性 G1y-Sar (終濃度 20 mM)を混合したMES溶液を 添加し、同様に操作した。

なお、AsPC-1細胞におけるPEPT1の発現は、 ウエスタンブロット法により確認した。

(5) BALB/c (*nu/nu*) マウス(雄性,5週齢)の右肩にAsPC-1細胞(5×10⁶ cells/100 µl PBS)を皮下接種し、その2週間後、左肩にテレピン油(50 µl)を皮下投与して炎症を誘発させた。3日後、モデルマウスを絶食させ、2-[¹⁸F]FNA-Phe(370 kBq)、[¹⁴C]Gly-Sar(68 kBq)または[¹⁸F]FDG(185 kBq)を尾静脈より投与した。5,15,30,60分後に臓器を摘出、重量および放射能を測定し、単位重量あたりの放射能集積量(% ID/g)を求めた。なお、マウスから腫瘍または炎症性組織を

摘出し、パラフィン包埋後に HE 染色、Giemsa 染色を施すことで組織学的検討を行った。

(6)(5)と同様に作製したモデルマウスに
2-[¹⁸F]FNA-Phe(10 MBq)を尾静脈より投与し、60分後に15分間のPET撮像を行った。

4. 研究成果

(1) 2-[¹⁸F]FNA-Pheは、図2の反応式に従い 合成し、放射化学的収率 19%、放射化学的純 度 99%以上で得た。

2-[18F]FNA-Phe

図 2 2-[¹⁸F]FNA-Pheの合成反応式

(2) 脂溶性の指標として算出した分配係数の対数値(log(PC))を表1に示す。コンピューター(CS Chem Draw Ultra)計算にて求めたGly-Sarの分配係数の対数値は-2.3 であったことから、2-[¹⁸F]FNA-PheはGly-Sarに比べ高い脂溶性を有することが示唆された。

log(PC)					
pH 5.5	pH 6.0	pH 7.0	pH 7.4		
-0.52 ± 0.00	-0.80 ± 0.00	-1.16 ± 0.02	-1.30 ± 0.00		

表1 2-[¹⁸F]FNA-Pheの1-オクタノール/リン 酸緩衝液分配係数

(3) 2-[¹⁸F]FNA-Pheはマウス血漿中で2時間 インキュベートした後でも 99%以上が未変化 体で存在し、高い安定性を示した(図3)。

図 3 マウス血漿中における 2-[¹⁸F]FNA-Phe の安定性

(4) AsPC-1 細胞におけるPEPT1 の発現を確認した後、2-[18 F]FNA-Pheの細胞内移行性を検討した。2-[18 F]FNA-PheをAsPC-1 細胞に添加し、pH 6.0 の条件下でインキュベートしたところ、細胞内取込みは経時的に増加した。この取込みは、PEPT1 の基質である[14 C]Gly-Sarと比較して有意に高く (P<0.01)、また、過剰量のGly-Sarの同時添加により有意に阻害された (P<0.01)(図4-1)。さらに、2-[18 F]FNA-Pheの取込みは、低pH環境にすることで有意に増加した (P<0.01)(図4-2)。

PEPT1 はプロトン勾配を利用して基質とH^{*} を共輸送する。したがって、これらの結果は 2-[¹⁸F]FNA-PheがPEPT1 に基質として認識さ れたことを示唆するものである。

図 4-1 AsPC-1 細胞への 2-[¹⁸F]FNA-Phe取込み([¹⁴C]Gly-Sarとの比較)

図 4-2 AsPC-1 細胞への 2-[¹⁸F]FNA-Phe取込み (pH依存性)

(5) 2-[¹⁸F]FNA-Pheの腫瘍特異的集積性をイ ンビボで検討するため、評価系として、同一 個体のマウスに腫瘍と炎症性組織を同時に 作製した。IEL染色を行った結果、腫瘍組織切 片においては、インディアンファイル配列を 呈する細胞を認め、腫瘍の形成を確認した。 また、炎症組織切片においては、膿瘍や融解 壊死を伴う急性炎症の誘発を認めた(図 5-1)。 一方、Giemsa染色を行った結果、腫瘍組織切 片においては陽性反応を認めなかったのに 対し、炎症組織切片においては好中球の浸潤 を確認できた。

HE staining (Bar = 100 µm)

図 5-1 モデルマウスにおける組織IE染色像

モデルマウスにおける 2-[¹⁸F]FNA-Pheの体 内分布を図 5-2 に示す。2-[¹⁸F]FNA-Pheの腫 瘍への放射能集積は、投与 60 分後において、 腎臓, 肝臓, 小腸といった代謝-排泄系臓器 を除き最も高い値(1.1% ID/g)を示した。 また、腫瘍への放射能集積は炎症に比べ有意 に高く(15,30 分後; P < 0.01、60 分後; P < 0.05)、最大で 6.9 倍に至った。一方、骨 への放射能集積は低く、生体内で脱フッ素化 していないことが示された。また、イメージ ングの指標となる放射能の腫瘍/血液比は経 時的に増加し、投与 60 分後で 2.5 となり、 炎症/血液比に比べ投与 30 分後、60 分後で有 意に高い値を示した(P < 0.01)。

図 5-2 2-[¹⁸F]FNA-Phe投与後のマウス体内 放射能分布(A) 主要臓器における経時変化、 (B) 腫瘍のイメージングに関与する組織の 抜粋

さらに、2-[¹⁸F]FNA-Phe、[¹⁴C]Gly-Sarおよび[¹⁸F]FDGの腫瘍/炎症集積比の比較を図 5-3

に示す。[¹⁸F]FDGの腫瘍への放射能集積は炎症に比べ低かったのに対し、2-[¹⁸F]FNA-Phe と[¹⁴C]Gly-Sarの腫瘍への放射能集積は炎症 に比べ高く、特に 2-[¹⁸F]FNA-Pheは最も高値 を示した。

図 5-3 2-[¹⁸F]FNA-Phe、[¹⁴C]Gly-Sar、 [¹⁸F]FDGの腫瘍/炎症集積比の比較

(6) モデルマウスに 2-[¹⁸F]FNA-Pheを投与し、 60 分後からPET撮像を行った結果、右肩に作 製した腫瘍を明瞭に描出することができた。 一方、炎症への放射能集積は確認されなかっ た(図 6)。

図 6 2-[¹⁸F]FNA-Pheによる担癌マウスのPET イメージ

以上の結果から、新規開発した 2-[¹⁸F]FNA-PheはPEPT1 を介して細胞内に取り込まれ、腫 瘍を描出するPETプローブとしての基本的性 質を有することが示された。

5. 主な発表論文等 〔雑誌論文〕(計0件) 〔学会発表〕(計1件) Kawashima H, Toshikawa K, Mori D, Kimura H, Ono M, Saji H, Synthesis and evaluation of F-18 labeled peptidergic compound as a novel tumor peptide transporter imaging probe, 2010 Society of Nuclear Medicine, 2010年6月8日、Salt Lake City (USA) 〔図書〕(計0件) 〔産業財産権〕 ○出願状況(計0件) ○取得状況(計0件) [その他] なし 6. 研究組織 (1)研究代表者 河嶋 秀和 (KAWASHIMA HIDEKAZU) 独立行政法人 国立循環器病研究センタ ー・画像診断医学部・室長 研究者番号:70359438 (2)研究分担者 なし (3)連携研究者 なし