敵対生成脳：マルチエージエント学習の計算理論，アルゴリズムとロボティクス応用

なぜこの研究を行おうと思ったのか（研究の背景•目的）

－研究の全体像
近年の人工知能（AI）技術の急激な進展は，画像，音声，言語などの認識系において人間の能力を淩駕 することに成功したが，未だ一般化知能の実現にはほほど遠い。特に，多自由度の運動系や意思決定系など ではAI学習のためのビッグデータを準備することは困難であり，すでにある機能モジュールを別用途に再利用 （転移学習）することが期待されている。脳における効率良い学習方式を理論化しようとする試みである「敵対生成脳 をを仮説とし，脳における計算機構をヒトおよび霊長類（二ホンサル）の神経科学研究によ り明らかにし，それにならつた脳型AIとして導出，さらに，そのAIをロボティクスに応用する。

図1 研究の概要 「敵対生成脳」を仮説とし，計算神経科学（ヒトおよび二ホンサル），人工知能（AI），ロボティクス にわたる学際的研究を進める

－敵対生成脳の計算神経科学

ヒトおよび二ホンサルを対象に，敵対生成脳の基本的なモジュールである生成器および識別器の計算機構を明らかにする。ヒトに対してはAI画像生成と機能的核磁気共鳴図の組み合わせ，二 ホンサルには電気生理学および核磁気共鳴図の組み合わせを用いる

図2 ヒト計算神経科学研究 AI（上図）が作成した人工画像（下図）を見ている際の機能的核磁気共鳴図 を測り，その統計解析からヒトの脳識別器の機能を探る （Fujimoto，et al．）

－敵対生成脳の人工知能（AI）

敵対生成脳の仮説に基づいた，効率の良いAIアルゴリズムを開発する。具体的には，モデルベース強化学習，統計的見まね学習などをマルチ エージエント化することで発展させる。

－敵対生成脳によるロボティクス

敵対生成脳のAIアルゴリズムを，人と共創するロボティクスに応用する。具体的には，多様な環境での多脚ロボットの歩行制御，ヒューマノイド ロボットによるマルチタスク制御を課題とする。

図3 ロボティクス研究 歩いた先のテーブル上にある物体把持をするという一連の動作（マルチタスク制御課題）をAIが生成し，ロボットシミュレータ上で実装した（Hwang，et al．）

この研究によって何をどこまで明らかにしようとしているのか
－研究の達成目標
「敵対生成脳」の脳内機構をヒト・マカクサルの計算神経科学研究により明らかにし，脳の計算機構にならつ たAIとして導出，ロボティクスに応用することで実用性を評価する。高等生物の高効率の学習能を規範とす る脳型AIの実現と実環境口ボティクスの応用を示す。

－研究のアウトリーチ

将来的に超少子高齢化社会を支えるAI・ロボティクスの開発に寄与し，また，個別化•多様化社会における コミュケーシヨン・学習支援や社会行動障害をともなう精神疾患の理解につながる可能性がある

社会行動障害をとも なう精神疾患の理解

図4 研究のアウトリーチ

[^0]
[^0]: ホームページ等 http：／／ishiilab．jp／member／ishii／

