研究成果報告書 科学研究費助成事業

今和 6 年 4 月 1 7 日現在

機関番号: 11301
研究種目: 若手研究
研究期間: 2022 ~ 2023
課題番号: 2 2 K 1 3 9 9 4
研究課題名(和文)共鳴非弾性X線散乱による銅酸化物高温超伝導秩序と電荷励起の統一的観測
研究課題名(央文)Simultaneous investigation of superconducting order parameter and charge excitations in cuprate superconductors via resonant inelastic x-ray scattering
研究代表者
鈴木 博人(Suzuki, Hakuto)
東北大学・学際科学フロンティア研究所・助教
研究者番号 • 8 0 9 2 2 9 4 7
交付決定額(研究期間全体):(直接経費) 3,500,000円

研究成果の概要(和文):超伝導は低温で金属の電気抵抗がゼロになる現象である。銅酸化物高温超伝導の発見 以降、様々な遷移金属化合物における超伝導が発見されてきた。銅酸化物は結晶格子の振動を媒介とする従来型 の超伝導機構では説明できず、電子の電荷密度や磁気モーメントの振動を媒介とする非従来型の機構が有力候補 とされている。本研究ではX線を用いた新しい分光法である共鳴非弾性X線散乱を用いて、電荷の振動モードの振 る舞いを解明することを目的とした。銅酸化物のうち最も高い転移温度を示す物質群の電荷の振動モードは、長 距離の電子間クーロン相互作用を考えることで初めて説明できることがわかった。

研究成果の学術的意義や社会的意義

研究成果の学術的意義や社会的意義 本研究の結果、銅酸化物において電荷密度の集団的な振動が普遍的に存在し、かつその振る舞いが超伝導の発 現するCu02層の数に強く依存することが明らかとなった。この結果は3枚のCu02層を含む銅酸化物において超伝 導転移温度が最高になる理由を解明する可能性がある。また、鉄系やニッケル酸化物における非従来型超伝導一 般においても同様の電荷の振動モードの存在が期待され、広く非従来型超伝導機構における電荷自由度の重要性 を示唆するものである。

本研究で確立した散乱角度を連続的に変化させる共鳴非弾性X線散乱手法は、NanoTerasuにおける超高分解能 RIXS測定において幅広い量子物質に対して適用可能である。

研究成果の概要(英文): Superconductivity is a phenomenon where the electrical resistance of a metal becomes zero at low temperatures. Since the discovery of high-temperature superconductivity in cuprates, superconductivity has been found in various transition metal compounds. Superconductivity in cuprates cannot be explained by the conventional mechanism that involve lattice vibrations as a pairing glue but is considered to involve unconventional mechanisms mediated by the oscillations of electronic charge density or magnetic moments. This study aims to elucidate the behavior of charge oscillation modes using resonant inelastic x-ray scattering. It was found that the charge oscillation modes in the group of cuprates exhibiting the highest transition temperatures can only be explained by considering long-range Coulomb interactions between electrons in different CuO2 sheets.

研究分野: 強相関電子系

キーワード: 高温超伝導 プラズモン 長距離クーロン相互作用

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1. 研究開始当初の背景

銅酸化物における高温超伝導は、CuO₂層を含む反強磁性モット絶縁体の母物質に電荷キャリ アを導入することによって発現する。モット絶縁相近傍の電子状態は、Cu3d_{2-y2}軌道の電子と それらの間のサイト内クーロン反発を記述するハバード模型に基づいて記述される。この理論 模型により、絶縁相における長距離反強磁性秩序が正しく再現される。また、キャリアドープさ れた常磁性金属相においては反強磁性スピン揺らぎの交換から生じる d_{x2-y2} 波超伝導ペアリン グ対称性が再現される。

このスピン揺らぎ機構は銅酸化物高温超伝導の重要な特徴を再現するが、超伝導転移温度(Tc) の最適化機構を完全には解明していない。様々な結晶構造をとる銅酸化物において、Tc は homologous series のうち隣接する3層のCuO2層を持つ物質で普遍的に最高値を取ることが知 られている。スピン揺らぎ(パラマグノン)の分散関係はCuO2層の数に顕著な依存性を示さな いため、他の効果を考慮に入れる必要がある。この普遍性を説明する理論的提案には、Tc を高め るための集団的な電荷揺らぎの重要性を示唆するものがある。しかし、電荷揺らぎの運動量依存 性を実験的に測定する手法が確立されておらず、超伝導転移温度の最適化における電荷揺らぎ の役割の理解が進んでいなかった。

近年の共鳴非弾性 X 線散乱 (RIXS) 装置の進歩により、高温超伝導に関連する様々な集団励 起モードの測定が可能になった。観測される集団励起には、高温超伝導研究で盛んに議論されて きたパラマグノン・フォノンに加え、電荷の集団励起であるプラズモンが含まれる。研究開始時 の先行 研究において単層系 銅酸化物(電子ドープ系 La2-xCexCuO4、ホールドープ系 La2-xSrxCuO4および Bi2Sr1.6La0.4CuO6+6)のプラズモンの分散関係は acoustic、すなわち長波長 極限 $q \to 0$ でエネルギーギャップがないことが示されていた。一方、無限 CuO2 層物質 Sr0.9La0.1CuO2においては $q \to 0$ でエネルギーギャップが存在する。この定性的な違いは層間の 電子ホッピングの有無に由来する。さらに、全ての場合においてプラズモンは長距離のクーロン 相互作用による顕著なエネルギー分散を示す。しかしながら複層系の銅酸化物における電荷揺 らぎの報告がないことから、超伝導の最適化機構とプラズモン分散の関係は未解明であった。

2. 研究の目的

(1) 本研究では Bi 系銅酸化物で最高の $T_c = 110 \text{ K}$ を持つ最適ドープ Bi₂Sr₂Ca₂Cu₃O_{10+ δ} (Bi2223) のプラズモン分散を観測することを目的とした。Bi2223 は隣接する 3 枚の CuO₂ 面を有し、異なる 3 層はブロック層によって隔てられている。従って、プラズモン分散に対する層間ホッピングの効果および長距離クーロン相互作用の効果を検証するために最適であると考えられた。

(2) 同時に、 $d_{x_2-y_2}$ 波超伝導ギャップを跨いだボゴリューボフ準粒子の対励起の観測可能性も検証した。 $q \rightarrow 0$ での対励起は可視光ラマン散乱で観測されるが、RIXS による有限の q での測定可能性を検証した。本手法が実現されれば幅広い超伝導体の超伝導秩序研究が可能になる。

3. 研究の方法

ホールドープ系 Bi2223 のプラズモン励起の観測のため、本研究では酸素 K吸収端 RIXS を採 用した。中間状態の酸素 1s 内殻正孔は軌道角運動量がゼロであるためスピン軌道結合がない。 その結果、散乱断面積には磁気散乱が含まれず、電荷応答の選択的な測定が可能になる。RIXS 実験は、Taiwan Photon Source の Beamline 41A における AGS-AGM 分光器を使用した。入 射光エネルギーを Zhang-Rice Singlet 状態への遷移ピーク(527.9 eV)に選び、ホールキャリア の応答を選択的に励起した。 X線光子の偏光をσ偏光に選び、σ偏光およびπ偏光をもつ発光の スペクトルを CMOS 検出器で測定した。この際、検出器角度の連続回転機構を用いることで、 *q*空間で直線的な経路での測定が可能となる。エネルギー分解能は、酸素 *K*吸収端近傍で世界 最高の 22 meV に設定された。この高エネルギー分解能により、ブリルアンゾーン中心近くでの プラズモンギャップの定量的な決定が可能となった。

4. 研究成果

(1) Bi2223 のプラズモン分散の 解明。図 1 に測定された酸素 K 吸収端 RIXS スペクトルを示す。 測定は面内の経路 q=(H,0,L)お よび(H, H, L)(L=-2, -2.5)と

面直方向の経路 q=(0.06,0,L)に沿っ 図 1 最適ドープ Bi2223の酸素 K端 RIXS スペクトル。

て行われた。図中の赤丸で示すプラズモンのエネルギー位置は運動量の面内成分 Hの関数とし て大きく変化する一方、面外成分 L への依存性は大きくない。この結果は単層系のプラズモン 分散が強い L 依存性を示すことと対照的である。またゾーン中心では明瞭なエネルギーギャッ プが存在する。得られたプラズモン分散を定量的に記述するため、3 層の CuO₂ 層が繰り返され た理論模型の電荷感受率を乱雑位相近似で計算した。3 層の自由度に対応し3本のプラズモン 分散が現れるが、1本にはギャップがなく、残りの2本にはギャップが存在する。パラメータを 調整することで、強度の最も強い 2 番目の分散関係が実験結果をよく再現する。一方、3 層の CuO₂面のみの模型からはギャップのある分散関係が得られず、実験結果と一致しない。これは プラズモン分散関係に3 層を跨いだ長距離のクーロン相互作用の効果が現れることを示す。

一方低エネルギー部分(*E* < 0.1 eV)のスペクトル強度はフォノン励起が支配的であり、対励起 を含む連続励起のスペクトル強度は弱いことがわかった。連続励起の観測には先行研究でなさ れたように銅 *L*₃吸収端の方が適しており、追加の実験を計画している。

(2) Bi2223 の電荷秩序及びフォノン異常の発見。測定は散乱角度を可能な最大角度 150 度に固定することで、運動量移行の絶対値を最大化して行った。低エネルギーで観測されるフォノン分散のソフト化が *q*=(0.25,0,*L*)近傍で見られ、同時に弾性散乱強度に電荷秩序によるピークが観測された。一般に銅酸化物においては電荷秩序と超伝導秩序が競合することが知られているが、本結果は高い *T*eを持つ Bi2223 でも電荷秩序が存在することを示したものであり、電荷秩序相の普遍性を裏付けるものである。

(3) 水銀系銅酸化物 Hg1223 のプラズモン分散・フォノン異常の解明。確立した測定スキームを 銅酸化物で最大の Tcを有する三層系銅酸化物 Hg1223 に適用し、q=(H,0,L) 方向の酸素 K端 RIXS 測定を行った。得られたプラズモン分散は Bi2223 と同様に面内方向で強い分散を示し、 面外方向の依存性は小さいことがわかった。また低エネルギーでフォノン分散のソフト化が q= (0.3,0,L)近傍の電荷秩序ベクトル近傍で観測された。しかし酸素 K 吸収端の運動量移行は Hg1223 の電荷秩序ピークの直接観測には不足であることが判明したため、移行運動量の大きい 銅 La 吸収端の測定に進む計画である。

5.主な発表論文等

〔雑誌論文〕 計2件(うち査読付論文 2件/うち国際共著 2件/うちオープンアクセス 1件)	
1.著者名	4.巻
H. Suzuki, L. Wang, J. Bertinshaw, H. U. R. Strand, S. Kaser, M. Krautloher, Z. Yang, N. Wentzell, O. Parcollet, F. Jerzembeck, N. Kikugawa, A. P. Mackenzie, A. Georges, P. Hansmann, H. Gretarsson, B. Keimer	14
2 经立场通	5 张行在
2 · 副文行表題 Distinct spin and orbital dynamics in Sr2Ru04	2023年
3. 維誌名	6.最初と最後の百
Nature Communications	563-567
	本誌の右冊
10.1038/s41467-023-42804-3	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	該当する
1.著者名 Suzuki Hakuto、Zhao Guoqiang、Okamoto Jun、Sakamoto Shoya、Chen Zhi-Yin、Nonaka Yosuke、Shibata Goro、Zhao Kan、Chen Bijuan、Wu Wen-Bin、Chang Fan-Hsiu、Lin Hong-Ji、Chen Chien-Te、Tanaka Arata、Kobayashi Masaki、Gu Bo、Maekawa Sadamichi、Uemura Yasutomo J.、Jin Changqing、Huang Di- Jing、Fujimori Atsushi	4.巻 91
2 . 論文標題 Magnetic Properties and Electronic Configurations of Mn Ions in the Diluted Magnetic Semiconductor Ba1-xKx(Zn1-yMny)2As2 Studied by X-ray Magnetic Circular Dichroism and Resonant Inelastic X-ray Scattering	5 . 発行年 2022年
3	6 最初と最後の百
Journal of the Physical Society of Japan	1,5
	査読の有無
10.7566/JPSJ.91.064710	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	該当する
〔学会発表〕 計18件(うち招待講演 9件/うち国際学会 6件) 「 1 ※ままタ	
・元化日口 鈴太埔人 Wang Bertinshaw H R Strand S Kaeser M Krautloher 7 Yang N Wentzell O Pa	arcolle F Jerzembeck 菊川百

樹,A. P. Mackenzie,A. Georges,P. Hansmann,H. Gretarsson,B. Keimer

2.発表標題

Sr2Ru04におけるエネルギー的に分離したスピン・軌道励起の共鳴非弾性X線散乱による観測

3 . 学会等名

日本物理学会 2024年春季大会

4 . 発表年

1.発表者名

中田勝,岡本淳,志賀大亮,高橋龍之介,H.Y. Huang,A. Singh,組頭広志,和達大樹,石田茂之,永崎洋,藤森淳,D.J. Huang,鈴木博人

2.発表標題

酸素K端共鳴非弾性X線散乱による銅酸化物高温超伝導体Bi2223の電荷秩序・電荷励起の観測

3.学会等名

第37回日本放射光学会年会

4.発表年 2024年

1.発表者名

中田勝, 岡本淳, 志賀大亮, 高橋龍之介, H.Y. Huang, A. Singh, 組頭広志, 和達大樹, 石田茂之, 永崎洋, 藤森淳, D.J. Huang, 鈴木博人

2.発表標題

酸素K端共鳴非弾性X線散乱による銅酸化物高温超伝導体Bi2223の電荷秩序の観測

3 . 学会等名

日本物理学会第78回年次大会

4.発表年 2023年

1.発表者名

中田勝,岡本淳,志賀大亮,高橋龍之介,H.Y. Huang,A. Singh,組頭広志,和達大樹,石田茂之,永崎洋,藤森淳,D.J. Huang,鈴木博人

2.発表標題

酸素K吸収端共鳴非弾性 X 線散乱による三層系銅酸化物Bi2223のプラズモン分散の観測

3 . 学会等名

日本物理学会第78回年次大会

4.発表年 2023年

1.発表者名

鈴木博人

2.発表標題

共鳴非弾性X線散乱によるBi系銅酸化物の電荷励起

3 . 学会等名

高温超伝導フォーラム

4.発表年

1.発表者名

Hakuto Suzuki

2.発表標題

Distinct spin and orbital dynamics in Sr2RuO4

3.学会等名 RIXS/REXS workshop 2023(招待講演)(国際学会)

4 . 発表年 2023年

1.発表者名 Hakuto Suzuki

2.発表標題

Exotic magnetism in honeycomb ruthenium compounds: Insights from IRIXS

3 . 学会等名

International Conference on Strongly Correlated Electron Systems 2023(招待講演)(国際学会)

4 . 発表年 2023年

1.発表者名

Hakuto Suzuki

2.発表標題

Exotic magnetism in honeycomb ruthenium compounds: Insights from IRIXS

3 . 学会等名

NSRRC seminar(招待講演)(国際学会)

4 . 発表年 2023年

- - -

1.発表者名 鈴木博人

2.発表標題

共鳴非弾性 X 線散乱による強相関物質の素励起の研究

3 . 学会等名

日本物理学会 2023年春季大会(招待講演)

4 . 発表年 2023年

. 発表者名 鈴木博人

1

鈴木博人

2.発表標題

Distinct spin and orbital dynamics in Sr2RuO4

3.学会等名 令和4年度 TI-FRIS/FRIS シンポジウム

4.発表年 2023年

1.発表者名 鈴木博人

2.発表標題 共鳴非弾性X線散乱で見る量子物質の素励起

3 . 学会等名

令和4年度 後期第5回 全領域合同研究交流会

4.発表年 2023年

1.発表者名

Hakuto Suzuki

2.発表標題

Spin and orbital fluctuations in Sr2RuO4 revealed by resonant inelastic x-ray scattering

3.学会等名

Integrated Spectroscopy for Strong Electron Correlation –Theory, Computation and Experiment(国際学会)

4 . 発表年

2022年

1.発表者名 Hakuto Suzuki

2.発表標題

Collective excitations from exotic quantum states in correlated materials

3 . 学会等名

The 6th QST International Symposium: Innovation in Science and Technology from "NanoTerasu"(招待講演)(国際学会) 4.発表年

1.発表者名 鈴木博人, 宮脇淳

2.発表標題

外場下・空間分解 RIXS による量子物質の相競合の解明

3.学会等名

量研-東北大マッチング研究支援事業 2022年度キックオフ・ワークショップ(招待講演)

4 . 発表年 2022年

1.発表者名 鈴木博人

2.発表標題 共鳴非弾性X線散乱による酸化物研究の新展開

3 . 学会等名

第83回 応用物理学会秋季学術講演会 先端計測と機能性酸化物研究の共進化(招待講演)

4 . 発表年 2022年

1.発表者名

藤原秀行, 佐藤楓貴, H.Gretarsson, B. Keimer, 今井良宗, 大串研也, 鈴木博人

2.発表標題

Ru L3端共鳴非弾性X線散乱によるRuX3 (X = Br, I)の多重項の観測

3 . 学会等名

日本物理学会 2022年秋季大会

4 . 発表年 2022年

1.発表者名 鈴木博人

2.発表標題

共鳴非弾性X線散乱で見る量子物質の素励起

3 . 学会等名

令和4年度前期第2回 全領域合同研究交流会(招待講演) 4.発表年

1.発表者名

Hakuto Suzuki

2.発表標題

Exotic magnetism in honeycomb ruthenium compounds: Insights from IRIXS

3 . 学会等名

DESY Photon Science Seminar(招待講演)(国際学会)

4 . 発表年

2022年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

_

6.研究組織

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
研究協力者	中田 勝 兵庫県立大学 (Nakata Suguru)		
		(24506)	
研究協力者	山瀬 博之 (Yamase Hiroyuki)	国立研究開発法人物質・材料研究機構	
		(82108)	

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計1件	
国際研究集会	開催年
RIXS/REXS workshop 2023	2023年~2023年

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関			
ドイツ	Max Planck Institute	DESY	Friedrich-Alexander- University	
その他の国・地域	NSRRC			
米国	Flatiron Institute	Columbia University		
フランス	Universite Paris-Saclay	Ecole Polytechnique	College de France	

共同研究相手国	相手方研究機関			
スウェーデン	Orebro University			
212	University of Geneva			
オランダ	Radboud University			
アルゼンチン	Facultad de Ciencias Exactas			