

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成25年5月10日現在

機関番号:11301			
研究種目:若手研究(A)			
研究期間:2011~2012			
課題番号: 23686002			
研究課題名(和文)d 電子系透明導電体・材料設計指針の再構築			
研究課題名 (英文) Restructuring materials design principles of d-electron based			
transparent conducting oxide			
研究代表者:			
ー杉 太郎 (HITOSUGI TARO)			
東北大学・原子分子材料科学高等研究機構・准教授			
研究者番号:90372416			

研究成果の概要(和文):

d 電子系透明導電体・材料設計指針の再構築

透明導電膜のメカニズムを原子スケールで理解するための土台作りと、新規透明導電体の探索を行った。前者に関しては、走査型トンネル顕微鏡を用いて SrTiO₃ 基板、および、酸化物薄膜の電子状態の評価を行った。そして、後者に関しては、我々が見いだした LiTi₂O₄透明超伝導体について、そのメカニズムの検討を行った。

研究成果の概要(英文):

Restructuring materials design principles of d-electron based transparent conducting oxide

We have performed two studies: atomic-scale investigation of the electronic structure of oxide thin films and development of a new transparent conductor. For the former, we revealed electronic structures and atomic arrangement of oxide thin films and $SrTiO_3$ substrate. The latter study consists of unveiling the mechanism of transparent superconductivity found in $LiTi_2O_4$.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2011年度	13, 800, 000	4, 140, 000	17, 940, 000
2012年度	5, 700, 000	1, 710, 000	7, 410, 000
年度			
年度			
年度			
総計	19, 500, 000	5, 850, 000	25, 350, 000

研究分野: 工学

科研費の分科・細目:応用物理学・工学基礎 キーワード: セラミックス

1. 研究開始当初の背景

報告者は、グリーン・イノベーション、あるいは、元素戦略という観点から、Inを用いない TiO₂透明導電材料開発、および、それ

応用物性・結晶工学

を用いた太陽電池や白色発光ダイオードの高 効率化に関する研究を行ってきた[一杉,応 用物理学会誌(2008)、一杉,化学(2007)]。

さらに、その透明導電メカニズムから独自 に導き出した材料設計指針に基づき物質探索 を行ったところ、Nb₁₂O₂₉ が透明導電性を示す ことを見いだした[大沢,一杉他,J. Phys. Chem. C(2011)]。これら一連の取り組みによ り、遷移金属酸化物を母物質とした、"d 電子 系透明導電体"という材料カテゴリーの創出 に成功した。

しかし、d 電子系透明導電体の微視的メカ ニズムの解明は始まったばかりである。Nb ド ープTiO₂透明導電体の透明導電メカニズムに は、欠陥が大きな役割を果たしていると第一 原理計算から推測されるが [Kamisaka, Hitosugi *et al.*, J. Chem. Phys. (2009); Kamisaka *et al.*, J. Mater. Sci, (2012)]、 薄膜内の欠陥やその電子状態(価数や電荷分 布)、固体内の電子状態分布など、原子レベル 空間分解能での実験的証拠は何も得られてい ないのが実情である。

今後、メカニズムを解明し、更なる新規透 明導電体を開拓するのに当たって、以下二点 の確固たる研究を推進することが必要である。

- <u>酸化物薄膜の電子状態を原子レベル空</u> <u>間分解能で評価する</u>
- 2. 透明導電性を示す物質の探索

前者に関しては、透明導電性の理解に取り 組むのみならず、様々な機能性酸化物薄膜物 性研究に展開することが可能である。酸化物 薄膜物性の理解には、Dagotto が述べるよう に[Science(2005)]、ナノメータスケールでの 電子状態の不均一性が鍵を握っている。その ような観点で、原子レベルでの局所電子状態 評価に成功しているのは、高温超伝導体と Ru 酸化物のみである (Davis ら、Science, Nature 多数)。これらは劈開が可能な酸化物に限定さ れており、物質バラエティの広がりが無いと いうことが閉塞感を生んでいることは否めな い。そこで、近年、急速に発展しつつある酸 化物エピタキシャル薄膜作製技術を活用し、 機能性酸化物薄膜の電子状態評価を原子レベ ルで行うことが、酸化物の物性理解につなが ると期待される。しかし、実験設備構築の難 しさから、極低温下での原子レベル電子状態 評価は、これまで行われなかった。

一方、後者に関しては、いくつかの物質に

ついて共通な事象を抽出し、普遍的な原理を 確立するという点で極めて重要である。TiO₂ の周辺物質において、遷移金属酸化物をベー スとする新規透明導電体を探索することが必 要となる。

2. 研究の目的

以上を鑑み、本研究では、透明導電・遷移 金属酸化物(d 電子系透明導電体)薄膜の微視 的状態の理解と新規透明導電体の開発に向け て、以下の研究を行った。

- 走査型トンネル顕微鏡/スペクトロス コピー(STM/STS)を活用し、遷移金属 酸化物の電子状態を、原子スケールで 明らかにする。
- 地球上に豊富な遷移金属を用いた新 規透明導電体探索を行う。In を用いな い、すなわち、Critical Materials を用いないという意味で、元素戦略に も合致する研究である。

本研究では、この二点を通じ、新規透明導 電体開発に向けた、材料設計指針の再構築を 目指した。

実際に研究をはじめると、SrTiO₃ 基板が薄 膜成長に大きく影響を及ぼすことがわかり、 研究の方向性を模索しながら、実験を進めた。 2年間の研究成果として、具体的な報告内容 を、以下の3つ(1-3)に集中する。

 SrTi0₃ 基板の原子レベル分解能での局所 状態密度評価

酸化物薄膜成長用基板として用いられ ている SrTiO₃表面は、成膜直前の状態で は、原子レベルでの秩序構造を有しない ことを明らかにした。したがって、本研 究では、まず、SrTiO₃-($\sqrt{13x}\sqrt{13}$)- $R3.7^{\circ}$ 再構成基板表面の構造と局所状態密度評 価を行った。そして、この基板を用いて 成膜を進め、原子レベルで酸化物薄膜成 長状態を明らかにした。

(2) LaAl0₃/SrTi0₃ヘテロ構造の STM 観察

この界面は高い移動度を有する電子系 が発現することで有名な系である [Ohtomo, Nature (2004)]。また、酸化物 薄膜成長のモデルケースとして、最も成 長状態や成長条件が研究されている。し かし、原子レベルでの成長状態の解明は 手がつけられていない。そこで、この薄 膜成長の初期過程を明らかにした。

この研究から酸化物薄膜の STM/STS 測 定の礎ができ、透明導電体への展開が期 待される。

(3) LiTi₂0₄の透明"超伝導"現象のメカニ ズムに関する研究

LiTi₂0₄が透明導電性を有することを明 らかにした。そこで、このメカニズムの 理解を試みた。

3. 研究の方法

本研究を遂行するためには、実験内容に合 致した実験装置を使用する必要があった。そ こで、報告者が開発を続けてきたSTM-薄膜作 製装置複合システムを活用した[Iwaya et al. Rev. Sci. Instrum. (2011); 一杉、走査トン ネル顕微鏡(岩波書店)]。この実験装置は、パ ルスレーザー堆積(PLD)法による酸化物薄膜 を作製した後、大気に暴露することなく極低 温-強磁場環境下でSTM/STS 測定が可能とな るシステムであり、世界に唯一の装置である。 この装置を活用し、SrTiO₃ ホモエピタキシャ ル薄膜について成長初期過程や表面の局所電 子状態を明らかにしてきた[Ohsawa et al., J. Appl. Phys. (2010)、Iwaya et al., Appl. Phys. Expr. (2010)]。 4. 研究成果

(1) SrTiO₃ 基板の原子レベル分解能での局所 状態密度評価

原子レベルで秩序立った表面を準備するた め、様々な加熱条件で表面処理を行った。そ の結果、通常の成膜に用いる温度や酸素分圧 条件下において、ステップ-テラス構造上に ($\sqrt{13} \times \sqrt{13}$) - $R3.7^{\circ}$ 構造(以下、($\sqrt{13} \times \sqrt{13}$) 13)表面と省略)を有する表面の調製に成功し た [Shimizu *et al.*, ACS Nano, **5**, 7967 (2011)]。この加熱処理の要点は、酸素欠損を できるだけ作らないようマイルドに加熱を行 うことにあり、ステップ-テラス構造を得るた めの高温加熱時間を最小限に留めた。酸素欠 損量が表面構造に影響をもたらすことも見出 した[Shimizu *et al.*, Appl. Phys. Lett. 100, 263107 (2012)]。

この再構成表面の構造はすでに透過電子顕 微鏡 (Transmission Electron Microscopy: TEM)と第一原理計算を用いた構造提案がなさ れており、バルク終端TiO₂面上にもう1層TiO₂ 組成からなるネットワークが形成されている (TiO₂二重層モデル)[Erdman *et al.*, Nature (2002); Kienzle *et al.*, Phys. Rev. Lett. (2011)]。

この TEM グループとは独立に、我々も STM/STS と理論計算(共同研究:浜田幾太郎博 士)による構造・電子状態評価によるモデリン グを行った結果、同一の構造で説明ができる という結論を得た。この TEM と STM というプ ローブの性質を異にする手法によって同一の 構造が提案されたという事実は、TiO₂ 二重層 構造の妥当性を示しているとも言えよう。

本研究は、STM を用いて原子レベルで基板 表面の原子配置を明らかにしたことにより、 様々な薄膜成長を原子レベルで追うことが可 能になったという点で非常に意義深い。また、 原子レベルで制御された基板では、初期成長 過程の核生成が通常の基板とは異なる可能性 があり、薄膜成長制御にもつながる。

(2) LaAl0₃/SrTiO₃ヘテロ構造の STM と輸送特 性評価

この系は、界面において高い電気伝導性を 示すことから、非常に注目を浴びている。そ して、成膜に関して多くの知見が蓄積されて いるのにもかかわらず、原子レベルで成膜初 期状態を調べた例は皆無である。

本研究の特徴は、原子が周期的に並んでいることが確認されている、前述のSrTiO₃(001)-($\sqrt{13x}\sqrt{13}$)-R3.7°再構成基板上に、精密にLaA1O₃薄膜を作製する点である。その結果、非常に特異な結晶成長をすることが明らかになった。

具体的には、LaA10₃(0.2 層) ヘテロエピタキ シャル成長の初期過程の観察を試みた(図 2(b))。驚くべきことに、基板表面と LaA10₃ アイランド表面の STM 像は非常に似ており、 基板に見られたメッシュ状の構造が、両者に 観察される。このメッシュの正体は、TiO₂ 二 重層モデルでいう余剰 TiO₂層の($\sqrt{13} \times \sqrt{13}$) 周期構造であり、元々の基板上の Ti と 0 原子 が堆積後の薄膜表面へ移動し、再び($\sqrt{13} \times \sqrt{13}$)

この結果により、成膜前の STO 基板表面の 余剰なTi や0が最表面に浮き出ることがわか り、薄膜・基板界面が原子レベルでコヒーレ ントに成長していく描像が得られる。整理す ると、基板表面に降り積もった原子は、1)- 度すべての元素が混合したアイランドを形成 した後に、余剰なTiと0を表面にはき出す、 あるいは、2)余剰なTiや0の下に、飛来した 原子が潜り込みつつ成長する。したがって、 界面に取り残されて汚い界面を形成すること や、一層だけLAOをエピタキシャル成長した 場合、その一層のLAOの格子内にTiが取り込 まれる可能性が低い、ということを示してい る。このように、真に原子レベルで制御され た基板を使用することにより、薄膜第一層目 からの初期成長状態について詳細に議論する ことが可能となった。

この結果をもう少し突き詰めて考えると、 ($\sqrt{13x}\sqrt{13}$)の周期性を持つ余剰TiO₂層がSTO 表面から切り離されて、LAO 表面に移動した ということである。すなわち、この($\sqrt{13x}\sqrt{13}$)の周期性を持つTiO₂層はナノシートのよ うにとらえることができ、酸化物ナノ構造が 形成できたということを意味している[一杉 ら、応用物理(2013)]。

さらに、1層、2層、3層とLaA10₃薄膜の厚 みを変えたヘテロ構造を作製し、超高真空中 で輸送特性評価を行った。その結果、2層の LaA10₃薄膜を成膜した場合に高電気伝導が発 現した。これは、4層の薄膜を積まねばなら ないとされていた定説[Thiel *et al.*, Science (2006)]とは異なる結果であり、再構 成した基板を用いると、新たな物性が現れる ことを意味している。

(3) LiTi₂0₄の透明"超伝導"現象

スピネル構造を有する LiTi₂04 エピタキシ ャル薄膜が、透明導電性を示すことを見いだ した。さらにこの薄膜は13K で超伝導性を示 すことから、透明"超伝導体"であることが 明らかになった。透明超伝導体としては最高 の超伝導転移温度を示す。

BCS 理論によると、高い超伝導転移温度を 示す物質ではキャリア濃度が高いことが示さ れる。しかし、それでは可視光領域の透過率 が減少してしまうため、高い超伝導転移温度 を持ち、透過率が高い物質は存在しないと考 えられる。実際に、数多くの超伝導体の大部 分は金属材料であり、金属光沢を有している。 また、1986年に発見された銅酸化物超伝導体 は黒色であり、透明性と超伝導性は相容れな いものと認識されていた。しかし、透明性と 超伝導性をあわせ持った材料を実現すること ができれば、量子コンピュータや超高感度光 センサーをはじめとする新奇光エレクトロニ クスデバイスの開発など様々な応用が期待で きる。

この透明超伝導体は、従来から超伝導体と して知られていたリチウム酸化物(LiTi₂0₄)の 薄膜合成を精緻に行うことで実現した。具体 的には、薄膜内のリチウム量の調整、成膜時 の温度制御,および単結晶基板の選択を行い、 合成条件を最適化した。その結果、高品質な LiTi₂0₄薄膜合成に成功し、室温で低い電気抵 抗率 3.3×10⁻⁴ Ω cm を示す薄膜が得られた。

そして、可視光透過率を計測したところ、60% 以上(膜厚:約 170 nm)を有することが明ら かになった。さらに、13.3 K で超伝導転移を 示し,透明な超伝導体としては世界最高の転 移温度を示した[Kumatani *et al.*, Appl. Phys. Lett. (2012)]。

この透明超伝導性の起源を探ったところ、 バンド構造に従来型透明導電体に類似した特 徴があり、さらに、電子の有効質量が鍵を握 っていることが明らかになった。

今回合成に成功した LiTi₂0₄薄膜は,室温に おいても透明性と電気伝導性に優れているた め,透明導電体としても実用化できる可能性

がある.そして、安価なチタン酸化物である ため、インジウム代替材料としての可能性も 秘めている。今後、応用に向けて、この物質 ならではの特徴を探索していく必要がある。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計11件)

1. 清水亮太、大澤健男、岩谷克也、<u>一杉太郎</u> "走査トンネル顕微鏡を用いた酸化物薄膜成 長のその場観察"応用物理学会誌 82, 141 (2013). (査読無)

http://www.jsap.or.jp/ap/2013/02/ob82014 1.xml

 大澤健男、<u>一杉太郎</u>
"透明超伝導体の開発"
日本セラミックス協会誌(セラミックス) 48, 58 (2013).(査読無)

3. Katsuya Iwaya, Ryota Shimizu, Akira Teramura, Seiji Sasaki, Toru Itagaki, and <u>Taro Hitosugi</u>

"Design of an effective vibration isolation system for measurements sensitive to low-frequency vibrations" J. Vac. Sci. Technol. A30, 063201-1 (2012). (査読有)

http://dx.doi.org/10.1116/1.4754700

4. Ryota Shimizu, Katsuya Iwaya, Takeo Ohsawa, Susumu Shiraki, Tetsuya Hasegawa, Tomihiro Hashizume, and <u>Taro Hitosugi</u>

"Effect of oxygen deficiencies on $SrTiO_3(001)$ surface reconstructions" Appl. Phys. Lett. 100, 263106 (2012). (査 読有)

http://dx.doi.org/10.1063/1.47304

5. P. Richard, T. Sato, S. Souma, K. Nakayama, H. W. Liu, K. Iwaya, <u>T. Hitosugi</u>, H. Aida, H. Ding, and T. Takahashi "Observation of momentum space semi-localization in Si-doped β -Ga₂O₃" Appl. Phys. Lett. 101, 232105 (2012). (査 読有) http://dx.doi.org/10.1063/1.4769109

7. Takeo Ohsawa, Tohru Suzuki, <u>Taro</u> <u>Hitosugi</u>

"High-Temperature Stability of Nb₁₂O₂₉ 月 11-14 日 愛媛大学 Transparent Conductor" 3. "Visualizing Atomic-Scale Thin-Film Thin Solid Films 526 218-220 (2012). (査 Growth Process on $SrTiO_3(001)''$ 読有) T. Ohsawa, R. Shimizu, K. Iwaya, S. Shiraki, http://dx.doi.org/10.1016/j.tsf.2012.11. T. Hitosugi 025 Workshop on Oxide Electronics 19 (WOE19), Sep. 30 - Oct. 3, 2012, Apeldoorn, 8. 大澤健男、岩谷克也、清水亮太、一杉太郎 Netherlands "ペロブスカイト酸化物薄膜の初期成長過程" 表面科学 33, 357-362, (2012). (査読無) 4. "Spatially Resolved Nano-Scale http://ci.nii.ac.jp/naid/10030756530 Characterization of Electronic States in SrTiO₃(001) Surfaces by STM/STS" K. Iwaya, T. Ohsawa, R. Shimizu, T. 9. Ryota Shimizu, Katsuya Iwaya, Takeo Hashizume, T. Hitosugi Ohsawa, Susumu Shiraki, Tetsuya Hasegawa, APS March Meeting, Feb. 26-Mar. 2, 2012, Tomihiro Hashizume, Taro Hitosugi Boston, Massachusetts "Atomic-scale visualization of initial growth of homoepitaxial SrTiO₃ thin film on 〔図書〕(計 2件) an atomically ordered substrate" 1. 大澤健男、一杉太郎 ACS Nano 5, 7967-7971 (2011). (査読有) http://dx.doi.org/10.1021/nn202477n "透明超伝導体の開発" 高温超伝導現象と用途開発最前線 10. Katsuya Iwaya, Ryota Shimizu, Tomihiro NTS 2013 年 分担執筆 442-448 Hashizume, and Taro Hitosugi "Systematic analyses of vibration noise of a vibration isolation system for 2. 一杉太郎、山田直臣 high-resolution scanning tunneling microscopes" "TiO。透明導電体のスパッタ成膜" Rev. Sci. Instrum. 82, 083702 (2011). (査 光学薄膜の最適設計・成膜技術と膜厚・膜質・ 読有) 光学特性の制御 http://dx.doi.org/10.1063/1.3622507 技術情報協会 2013 年 刊行予定 分担執筆 11. 岩谷克也、大澤健男、清水亮太、一杉太郎 "SrTio,ホモエピタキシャル薄膜成長初期過 〔産業財産権〕 程の原子スケール観察" ○出願状況(計0件) 日本結晶学会誌 53, 353-358 (2011). (査読 無) ○取得状況(計0件) http://jglobal.jst.go.jp/public/20090422 /201102299412545325 [その他] ホームページ等 http://www.wpi-aimr.tohoku.ac.jp/hitosug 〔学会発表〕(計22件) i labo/ 1. "酸化物基板の最表面構造: その平坦化プ 6. 研究組織 ロセス依存性" (1)研究代表者 清水亮太、岩谷克也、大澤健男、白木将、一 一杉 太郎 (HITOSUGI TARO) 杉太郎 東北大学·原子分子材料科学高等研究機 第73回応用物理学会学術講演会 2012年9 構・准教授 月 11-14 日 愛媛大学 研究者番号:90372461 2. "LaA10₃/SrTi0₃(001)-(√13×√13) ヘテロ 界面の形成初期過程観察" 大澤健男、清水亮太、岩谷克也、白木将、一 杉太郎 第73回応用物理学会学術講演会 2012年9