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WFZER R DOBEE (£3C) : Time series are now increasingly complex. Each observation may
describe a structured object (an image or a graph for instance) or alternatively a very high

dimensional feature vector. The goal of our project is to develop new methods to handle
time-series of complex data through kernel methods and optimization methods.
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The subject of analyzing time series
through kernel methods was relatively
underdevelopped at the time this
project started. Most techniques would
only consider distances for
multivariate time-series, and few
would consider their positive
definiteness. In particular, the
interplay between the way kernels on
single observations could be used to
form kernels on time-series of
observations had not been explored,
apart from our previous work on the
Global Alignment Kernel. Additionally,
some numerical issues relative to the
use of kernels for time-series were also
hindering their application to large

scale problems, since they were both
too slow and too unstable to be of
practical use.
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The goal of this research was to
develop kernel methods that could
accommodate times-series of
large-dimensional data, provide good
performances and be computationally
effective. In practical terms, our goal
was to develop theoretical foundations
and practical implementations
(computer code) of positive definite
kernel functions. These functions, to be
attractive to practitioners, must be
easily parameterized and intuitive,
fast to compute and numerically stable



(i.e. their performance does not vary
too quickly with parameter setting).
We wanted to distribute that software
on our website and provide utilization
guidelines. Our goal was also to apply
modern optimization techniques to
provide a new outlook on a
long-standing problem in time-series
analysis: cointegration. With
colleagues, we conjectured that the
detection of cointegrated relationships
between the different components of a
multivariate time series could be
studied under the light of semidefinite
programming. One of the goal of this
project was to investigate further this
connection and propose algorithms
that could handle this issue in an
innovative way.

3. WDk

Our contributions have relied on
different tools, among which (1)
dynamic programming and its
generalization from a (min,sum)
algebra to a (sum,product) algebra to
produce a soft-minimum; (2) Bayesian
linear regression, to propose closed
forms for kernels that average the
likelihood under a vector
autoregressive model of two time
series; (3) semidefinite programming,
to propose exact minimizers of
problems that are non-convex when
studying the properties of time-series.
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We have proposed two novel kernels for
time series: triangular global
alignment kernels as well as
autoregressive kernels. Both offer
state-of-the-art performance and were
shown to outperform other alternative.

Triangular Kernels

Global alignment kernels were
proposed a few years ago, and have
been successful in comparing timer
series of structured data by
reinterpreting the widely used
Dynamic Time Warping family of
distances for time-series.

Triangular global alignment kernels

were proposed by noticing that a
substantial acceleration at a very low
(if nonexistent) cost in performance
could be proposed to compute global
alignment kernels more efficiently. We
have also studied in that work
conditions for the numerical stability of
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Figure 1: Rather than considering the set
of all possible alignments to compare two

string x;...x5and yi...y7 the triangular
global alignment kernels only considers
alignments that lie not too far from the
diagonal by constraining the set of possible
alignments.

global alignment kernels as well as
further elements of their theoretical
validity by defining the class of
“geometrically divisible kernels”.
Geometrically divisible kernels are
positive definite kernels which can be
written as an infinite expansion of the
powers of another base kernel. This
concept may prove useful in the future
to study other kernels on structures.

Autoregressive Kernels

Autoregressive kernels build upon the
1dea that, two be similar, it suffices
that two time series have
simultaneaously high likelihoods for a
wide choice of parameters taken in a
family of parameterized distributions,

k(%) = | 9o o) w(ab),

where, in that work, we focus more
explicitly on the Vector Autoregressive

Models (VAR), hence the name of the
kernels we propose.
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AR kernels are extremely fast to
compute when considered on
high-dimensional multivariate time
series and perform comparably to
many other kernel functions. A possible
extension to time series in reproducing
kernel Hilbert spaces considered in
that paper might be, despite good
experimental results,

false from a theoretical point of view.
Indeed, a key result in our paper
(infinite divisibility of the inverse
generalized variance kernel between
distributions) needs to be reconsidered
under the light of recent work by S. Sra
("A new metric on the manifold of
kernel matrices with application to
matrix geometric means", NIPS 2012)
and this has delayed the publication of
our work so far. We are, however,
confident that we will find a proper
formulation to correct for that problem
in the next months.

Experimental results which illustrate
the interest of this approach are
provided in Fig.2 below. In that figure
we can see that the autoregressive
kernels perform at least as well as
many other alternatives over many
different parameter settings. The
version of our kernel that is not
kernelized (represented in dark blue in
the figures below) is markedly faster
than any of the other kernels
considered in this benchmark.
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Figure 2: Experimental error rate for the
autoregressive kernels on different data
sets compared to other choices.

Mean Reversion with a Variance
Threshold

We have proposed a new framework to
study equilibria (cointegration)
between different components of a
multivariate time-series, using
semi-definite programming.

The problem we have tried to tackle
was that of avoiding the detection of
cointegrated relationships in a
stochastic process that have a very low
variance. Indeed, from an econometric
point of view, it is sufficient to find a
vector y such that (7x:)is stationary
to obtain a cointegrated relationship.

However, we argue that in many
practical settings such a relationship is
useless. In particular, in the context of
statistical arbitrage of financial assets,
finding a perfectly cointegrated
relationships is not preferable, since
trading with a mean-reversion strategy
on such baskests usually incurrs a high
transaction cost.

Our method now allows to find a
direction y such that (37x:)is
stationary but at the same time ensure
that the variance of var (37x:)is not too
small. Our approach makes use of the
Slemma, that is the ability to solve for
non-convex quadratic problems in
variable y by solving a semidefinite
program in a positive definite matrix Y
and then recover an approximate
solution by considering the first
eigenvalue of Yas a possible solution
for y.

This approach has direct applications
in finance, but we expect that it can be
extended to anomaly detection by
estimating mean-reverting functions
that can act as alarm functionals when
studying a high-dimensional time
varying system.



This approach is illustrated in Fig.3
below, where we able to detect
meaningtul cointegrated relationships
(that have a sufficient variance)
between different assets.
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Figure 3: Comparison of a classic

cointegration technique (OLS) with our
approach (Portmanteau) when selecting a
basket of mean-reverting assets. The
resulting portfolio is more volatile (third
figure from top) and selects different
weights (second). This selection is
beneficial to record higher gains with lower
transaction costs (bottom).
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M. Cuturi, A.Doucet, Autoregressive
Kernels for Time Series, Journal of
Machine Learning Research. This article
has been accepted pending minor
modifications, which we need to take care
of to finalize our submission. A mistake in
one of our proofs has delayed the final
publication of this paper.

M. Cuturi, A. d'Aspremont, Mean Reversion with
a Variance Threshold, International Conference
on Machine Learning 2013, JMLR W&CP
28(3):271-279, 2013.
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M. Cuturi, Fast Global Alignment Kernels,
Proceedings of the International Conference on
Machine Learning 2011.
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